Study & Evaluation Scheme Of

Master of Technology

In

Thermal Engineering

[Applicable for 2018-20] Version 2018

[As per CBCS guidelines given by UGC]

BOS	BOF	BOM
24/3/2018	5/6/2018	11/6/2018
		Approved vide agenda number 1.7.1

Quantum University, Roorkee 22 KM Milestone, Dehradun-Roorkee Highway, Roorkee (Uttarakhand) Website: www.quantumuniversity.edu.in

Quantum University, Roorkee Study & Evaluation Scheme Study Summary

Name of the Faculty	Faculty of Mechanical Engineering
Name of the School	Quantum School of Technology
Name of the Department	Department of Mechanical Engineering
Program Name	Master of Technology in Thermal Engineering
Duration	2 Years
Medium	English

	Evaluation Sch	eme						
Type of Papers	Internal	End Semester	Total					
	Evaluation	Evaluation	(%)					
	(%)	(%)						
Theory	40	60	100					
Practical/ Dissertations/Project	40	60	100					
Report/ Viva-Voce								
Internal Evaluati	on Components	(Theory Papers)						
Sessional Examination I		50 Marks						
Sessional Examination II		50 Marks						
Assignment –I	25 Marks							
Assignment-II		25 Marks						
Attendance		50 Marks						
Internal Evaluation	on Components (Practical Papers)							
Quiz One		25 Marks						
Quiz Two		25 Marks						
Quiz Three		25 Marks						
Lab Records/ Mini Project		75 Marks						
Attendance		50 Marks						
End Semester	Evaluation (Pra	uctical Papers)						
ESE Quiz		30 Marks						
ESE Practical Examination		50 Marks						
Viva- Voce		20 Marks						

Structure of Question Paper (ESE Theory Paper)

The question paper will consist of 5 questions, one from each unit. Student has to Attempt all questions. All questions carry 20 marks each. Question Q1 to Q5 will be compulsory and each question will have 3 parts. Each part carries 10 marks each and the student may attempt any 2 parts.

Important Note:

1. The purpose of examination should be to assess the Course Outcomes (CO) that will

ultimately lead to attainment of Programme Specific Outcomes (PSOs). A question paper must assess the following aspects of learning: Remember, Understand, Apply, Analyze, Evaluate & Create (reference to Bloom's Taxonomy). The standard of question paper will be based on mapped BL level complexity of the unit of the syllabus, which is the basis of CO attainment model adopted in the university.

- 2. Case Study is essential in every question paper (wherever it is being taught as a part of pedagogy) for evaluating higher-order learning. Not all the courses might have case teaching method used as pedagogy.
- 3. There shall be continuous evaluation of the student and there will be a provision of real time reporting on QUMS. All the assignments will evaluated through module available on ERP for time and access management of the class.

Program Structure – Master of Technology in Thermal Engineering

Introduction

Master of Technology in Thermal Engineering is a course involving studies on an advanced level of concepts of energy efficiency, renewable energy & environmental preservation, and their entwinement with classical energy technologies and recently discovered technologies. The course covers real-time fluid flow and heat transfer applications in Thermal Energy Systems, Cryogenic Engineering, Refrigeration & Air Conditioning, and other fields. Thermal engineering is a branch of mechanical engineering that studies the regulation of heating and cooling processes in enclosed spaces. It ensures to provide students with an effective learning experience with thought-provoking teaching pedagogy. The curriculum is highly demanding and thoughtfully designed to incorporate all the latest development in the field. The curriculum of post graduate program in thermal engineering aims at creating the right mindset which ensures the creation of innovative, thoughtful, and socially aware engineers. It allows establishing a solid understanding of research to continue professional development in thermal engineering. It allows applying for specialist roles at a renowned manufacturing company. Student will develop the ability to use their math, science, engineering, and technology expertise. Understand, analyse, create, and solve issues related to the application of technology in a variety of industrial contexts in great detail. It also entails developing, choosing, and implementing relevant approaches, resources, modern engineering, and information technology tools to tackle complex engineering problems.

We believe in the practical nature of the domain and focus on learning by doing it practically. Students will gain an ability to specify, fabricate, test, operate, validate and complete documentation of thermomechanical systems or processes. Students will gain an ability to apply the acquired software's skills for simulation in the controlled environment and provide viable solutions.

Towards enhancing employability and entrepreneurial ability of the postgraduates the Quantum University increase the practical content in the courses wherever necessary. The total number of credits in 4 semesters programme will be around 66 for all the programmes.

In order to harness regional specialties and to meet region-specific needs the Quantum University modify the content of syllabus as per the regional demands.

Project

This course is spread across the semesters, from 3rd semester to fourth semester where student is required to do a project or field work or design/fabrication and test/simulate for a research problem.

B. Choice Based Credit System (CBCS)

Choice Based Credit System (CBCS) is a versatile and flexible option for each student to achieve his target number of credits as specified by the UGC and adopted by our university.

The following is the course module designed for the M.Tech (Thermal Engineering) program:

Core competency: Students will acquire core competency in Thermal aspects of Mechanical Engineering and in its application areas.

Program/Discipline Specific Elective Course (DSEC):

Skilled communicator: The course curriculum incorporates basics and advanced training in order to make a graduate student capable of expressing the subject through technical writing as well as through oral presentation.

Critical thinker and problem solver: The course curriculum also includes components that can be helpful to improve post graduate students to develop critical thinking ability by way of solving problems/numerical using basic

& advance knowledge and concepts of Thermal Engineering.

Sense of inquiry: It is expected that the course curriculum will develop an inquisitive characteristic among the students through appropriate questions, planning and reporting experimental investigation.

Skilled project manager: The course curriculum has been designed in such a manner as to enabling a postgraduate student to become a skilled project manager by acquiring knowledge about mathematical project management, writing, planning, study of ethical standards and rules and regulations pertaining to scientific project operation.

Ethical awareness/reasoning: A postgraduate student requires understanding and developing ethical awareness/reasoning which the course curriculums adequately provide.

Lifelong learner: The course curriculum is designed to inculcate a habit of learning continuously through use of advanced ICT technique and other available techniques/books/journals for personal academic growth as well as for increasing employability opportunity.

C. Program Outcomes of M.Tech Thermal Engineering.

Program Outcome (POs) – M. Tech

PO-01	Engineering knowledge	Exhibit in-depth knowledge in engineering specialization.
PO-02	Problem analysis	Think critically and analyze complex engineering problems to make creative advances in theory and practice.
PO-03	Design/Developm ent Of Solutions	An ability to design solutions for engineering problems and to design a component, system, or process that meet the specified needs with appropriate consideration for the public health and safety, along with the cultural, societal, and environmental considerations.
PO-04	Conduct Investigations of Complex Problems	Use research methodologies, techniques and tools, and will contribute to the development of technological knowledge
PO-05	Modern tool usage	Apply appropriate techniques, modern engineering tools to perform modeling of complex engineering problems with knowing the

		limitations.
PO-06	The Engineer and society	Achieve professional success with an understanding and appreciation of ethical behaviour, social responsibility, and diversity, both as individuals and in team environments.
PO-07	Environment and sustainability	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge for sustainable development to articulate a comprehensive world view that integrates diverse approaches to sustainability
PO-08	Communication	Communicate complex engineering problems with the engineering community and society, write and present technical reports effectively
PO-09	Ethics	Exhibit professional and intellectual integrity, ethics of research and scholarship and will realize the responsibility towards the community
PO-10	Individual and Team work	An ability to analyse the local and global impact of computing on individuals, organizations, and society.
PO-11	Project Management and Finance	Demonstrate knowledge and understanding of engineering and management principles and apply the same with due consideration to economical and financial factors.
PO-12	Life-long learning	Engage in life-long learning with a high level of enthusiasm and commitment to improve knowledge and competence continuously

Program Specific Outcomes (PSOs)

At the end of this programme, Post Graduates will be able to:

- **PSO 1:** Analyse the complex engineering problems by applying engineering knowledge in the area of thermal engineering systems.
- **PSO 2:** Provide engineering solutions to meet the specified needs with appropriate consideration for comfort, safety, social and environmental aspects.

Program Educational Objectives(PEOs)

In their careers, our post graduates will be able to:

- **PEO 1**: Analyze and solve thermal engineering problems using modern engineering tools in industry or in research.
- **PEO 2**: Play key role in collaborative multidisciplinary scientific research with due consideration to economical and financial factors for leading a successful career in industry or to pursue higher education or being an entrepreneur.
- **PEO 3**: Engage in life-long learning with professional code of conduct.

D. Pedagogy & Unique practices adopted:

""Pedagogy is the method and practice of teaching, especially for teaching an academic subject or theoretical concept". In addition to conventional time-tested lecture method, the institute will emphasize on experiential learning:

Mini projects: students are asked to do or given mini projects for developing an aptitude to critically think and find solutions for real world problems, learn working with other people, under deadlines and guidance.

Flip Presentations: Students are required to present on latest technology trends in mechanical engineering to enhance their ability to self learn and presentation skill along with developing their confidence level to face an audience.

Field/Live Projects: The students, who take up experiential projects in companies, where senior executives with a stake in teaching guide them, drive the learning. All students are encouraged to do some live project other their regular classes.

MOOCs: Students may earn credits by passing MOOCs as decided by the college. Graduate level programs may award Honors degree provided students earn pre-requisite credits through MOOCs. University allows students to undertake additional subjects/course(s) (In-house offered by the university through collaborative efforts or courses in the open domain by various internationally recognized universities) and to earn additional credits on successful completion of the same. Each course will be approved in advance by the University following the standard procedure of approval and will be granted credits as per the approval. Keeping this in mind, University proposed and allowed a maximum of two credits to be allocated for each MOOC courses. In the pilot phase it is proposed that a student undertaking and successfully completing a MOOC course through only NPTEL could be given 2 credits for each MOOC course.

For smooth functioning and monitoring of the scheme the following shall be the guidelines for MOOC courses, Add-on courses carried out by the College from time to time.

- a) It will necessary for every student to take at least one MOOC Course throughout the programme.
- b) There shall be a MOOC co-ordination committee in the College with a faculty at the level of Professor heading the committee and all Heads of the Department being members of the Committee.
- c) The Committee will list out courses to be offered during the semester, which could be requested by the department or the students and after deliberating on all courses finalize a list of courses to be offered with 2 credits defined for each course and the mode of credit consideration of the student. The complete process shall be obtained by the College before end of June and end of December for Odd and Even semester respectively of the year in which the course is being offered. In case of MOOC course, the approval will be valid only for the semester on offer.
- d) Students will register for the course and the details of the students enrolling under the course along with the approval of the Vice Chancellor will be forwarded to the Examination department within fifteen days of start of the semester by the Coordinator MOOC through the Principal of the College.
- e) After completion of MOOC course, Student will submit the photo copy of Completion certificate of MOOC Course to the Examination cell as proof.
- f) marks will be considered which is mentioned on Completion certificate of MOOC Course.
- g) College will consider the credits only in case a student fails to secure minimum required credits then the additional subject(s) shall be counted for calculating the minimum credits required for the award of degree.

Special Guest Lectures (SGL) & Extra Mural Lectures (EML): Some topics/concepts need extra attention and efforts as they either may be high in difficulty level or requires experts from specific industry/domain to make things/concepts clear for a better understanding from the perspective of the industry. Hence, to cater to the present needs of industry we organize such lectures, as part of lecture-series and invite prominent personalities from academia and industry from time to time to deliver their vital inputs and insights.

Student Development Programs (SDP): Harnessing and developing the right talent for the right industry an overall development of a student is required. Apart from the curriculum teaching various student development programs (training programs) relating to soft skills, interview skills, research tools etc. that may be required as per the need of the student and industry trends, are conducted across the whole program. Participation in such programs is solicited through volunteering and consensus.

Industry Focused programmes: Establishing collaborations with various industry partners to deliver the programme on sharing basis. The specific courses are to be delivered by industry experts to provide practice-

Special assistance program for slow learners & fast learners: write the note how would you identify slow learners, develop the mechanism to correcting knowledge gap. Terms of advance topics what learning challenging it will be provided to the fast learners.

Induction program: Every year 3 weeks induction program is organized for 1st year students and senior students to make them familiarize with the entire academic environment of university including Curriculum, Classrooms, Labs, Faculty/ Staff members, Academic calendar and various activities.

Mentoring scheme: There is Mentor-Mentee system. One mentor lecture is provided per week in a class. Students can discuss their problems with mentor who is necessarily a teaching faculty. In this way, student's problems or issues can be identified and resolved.

Extra-curricular Activities: organizing & participation in extracurricular activities will be optional for postgraduate students to develop confidence & face audience boldly. It shapes out their leadership qualities along with planning & organizing skills. Students can undertake various cultural, sports and other competitive activities within and outside then campus. This helps them build their wholesome personality.

Career & Personal Counseling: - Identifies the problem of student as early as possible and gives time to discuss their problems individually as well as with the parents. Counseling enables the students to focus on behavior and feelings with a goal to facilitate positive change. Its major role lies in giving: Advice, Help, Support, Tips, Assistance, and Guidance.

Participation in Flip Classes, Project based Learning(A2 Assignment), Workshops, Seminars & writing & Presenting Papers: Departments plan to organize the Flip Classes, Project based Learning(A2 Assignment), workshops, Seminars & Guest lecturers time to time on their respective topics as per academic calendar. Students must have to attend these programs. This participation would be count in the marks of general Discipline & General Proficiency which is the part of course scheme as non-credit course.

Formation of Student Clubs, Membership & Organizing & Participating events: Every department has the departmental clubs with the specific club's name. The entire student's activity would be performed by the club. One faculty would be the coordinator of the student clubs & students would be the members with different responsibility.

Capability Enhancement & Development Schemes: The Institute has these schemes to enhance the capability and holistic development of the students. Following measures/ initiatives are taken up from time to time for the same: Career Counseling, Soft skill development, Remedial Coaching, Bridge Course, Language Lab, Yoga and Meditation, Personal Counseling

Library Visit & Utilization of QLRC: Students may visit the library from morning 10 AM to evening 8 PM. Library created its resources Database and provided Online Public Access Catalogue (OPAC) through which users can be accessed from any of the computer connected in the LAN can know the status of the book. Now we are in process to move from OPAC to KOHA.

Quantum School of Technology Master of Technology in Thermal Engineering – PC: 01-4-01

CURRICULUM (2018-20), V 1.0

BREAKUP OF COURSES

Sr. No	CATEGORY	CREDITS
1	Program Core (PC)	27
2	Program Electives (PE)	15
3	Project	15
4	Seminar	6
5	General Proficiency (GP)	3
TOTAL N	NO. OF CREDITS	66

SEMESTER-WISE BREAKUP OF CREDITS

Sr. No	CATEGORY	SEM	SEM	SEM	SEM	TOTAL
		1	2	3	4	
1	Program Core	19	5	3	-	27
2	Program Electives	cogram Electives - 9 6		-	15	
3	Projects/Dissertation	-	-	4	11	15
4	Seminar	2	2	2	-	6
5	GP 1 1 1		1		3	
	TOTAL	22	17	16	11	66

SEMESTER 1

Course Code	Category	Course Title	L	Т	Р	С	Version	Course Prerequisite
ME4107	PC	Optimization Techniques	2	2	0	3	1.0	Nil
ME4101	PC	Advanced Fluid Mechanics	3	1	0	4	1.0	Nil
ME4102	PC	Advanced Thermodynamics	3	1	0	4	1.0	Nil
ME4103	PC	Advanced Heat Transfer	3	1	0	4	1.0	Nil
ME4108	PC	Instrumentation and Measurements	3	0	0	3	1.0	Nil
ME4170	FW	Seminar I	2	0	0	2		
ME4140	PC	Advanced Thermal Engineering Lab	0	0	2	1	1.0	Nil
GP4101	GP	General Proficiency	0	0	0	1		
		Total	16	5	2	22		

Contact Hrs: 23

SEMESTER 2

Course Code	Category	Course Title	L	Т	Р	С	Version	Course Prerequisite
ME4201	PC	Simulation Modeling and Analysis	3	2	0	4	1.0	Nil
	PE	Program Elective I	3	0	0	3		Nil
	PE	Program Elective II	3	0	0	3		Nil
	PE	Program Elective III	3	0	0	3		Nil
ME4240	PC	Simulation Lab	0	0	2	1	1.0	Nil
ME4270	FW	Seminar II	2	0	0	2		
GP4201	GP	General Proficiency	0	0	0	1		
		Total	14	2	2	17		

Contact Hrs: 18

SEMESTER 3

Course Code	Category	Course Title	L	Т	P	С	Version	Course Prerequisite
ME4307	PC	Research Methodology	2	0	0	2	1.0	Nil
	PE	Program Elective IV	3	0	0	3		Nil
	PE	Program Elective V	3	0	0	3		Nil
ME4340	PC	Research Methodology Lab	0	0	2	1	1.0	Nil
ME4370	FW	Seminar III	2	0	0	2		Nil
ME4371	FW	Project	0	0	8	4		Nil
GP4301	GP	General Proficiency	0	0	0	1		
		Total	10	0	10	16		

Contact Hrs: 20

SEMESTER 4

Course Code	Category	Course Title	L	Т	Р	С	Version	Course Prerequisite
ME4470	FW	Dissertation	0	0	4	11		
		Total	0	0	4	11		

Contact Hrs: 04

Elective	Course Code	Course Title	L	Т	Р	С	Version	Course Prerequisite
	ME4202	Cryogenic Engineering	3	0	0	3	1.0	Nil
Ι	ME4203	Transit Refrigeration	3	0	0	3	1.0	Nil
	ME4206	Refrigeration Machinery	3	0	0	3	1.0	Nil
	ME4204	Finite Element Analysis	3	0	0	3	1.0	Nil
II	ME4205	Computational Fluid Dynamics	3	0	0	3	1.0	Nil
	ME4210	Design of Heat Exchangers	3	0	0	3	1.0	Nil
	ME4207	Jet & Rocket Propulsion Systems	3	0	0	3	1.1	Nil
III	ME4208	Gas Turbine and Compressor	3	0	0	3	1.0	Nil
	ME4209	Fire Dynamics Engineering	3	0	0	3	1.1	Nil
	ME4301	Alternative Fuels	3	0	0	3	1.0	Nil
IV	ME4302	Solar Energy Technology	3	0	0	3	1.0	Nil
	ME4304	Nuclear Engineering	3	0	0	3	1.0	Nil
	ME4303	Energy Storage Techniques	3	0	0	3	1.0	Nil
V	ME4305	Energy Management In Thermal Systems	3	0	0	3	1.0	Nil
	ME4309	Air-Conditioning System Design	3	0	0	3	1.0	Nil

ME4107	Title: Optimization Techniques	LTPC
		2 2 0 3
Version No.	1.0	
Course Prerequisites	Nil	
Objectives	To provide the concepts of various classical and modern methods of for co	nstrained and
	unconstrained problems in both single and multivariable.	
Unit No.	Unit Title	No. of hours
		(per Unit)
Unit I	Classical Optimization	9
Introduction to Optimi	zation: Classification of Optimization, Design vector and constraints,	Constraint surface,
Objective function, Cla	assification of Optimization Problems. Single variable optimization, M	ulti-variable: Direct
substitution method, Lag	grange's method of multipliers, Karush-Kuhn-Tucker conditions.	
Unit II	Linear Programming	7
Linear Programming: St	atement of an LP problem, Simplex method, Dual simplex method.	
Unit III	One Dimensional Optimization	8
Unimodal function, Uni	restricted search, Exhaustive search, Dichotomous search, Interval halving	g method, Fibonacci
method, Golden section	method, Direct root methods: Newton-Raphson and Quasi Newton methods	
Unit IV	Unconstrained Optimization Techniques	6
Direct Search Methods:	Random search methods, Grid search method, Univariate method, Hookes	and Jeeves' method,
Powell's method, Dynar	nic Programming.	
Unit V	Modern Methods of Optimization	6
Genetic algorithms, sin	mulated annealing, fuzzy optimization, neural-network based methods	, Aunt and colony
approach.		
Text Books	1. Singiresu S. Rao, Engineering Optimization: Theory and Practice, John	Wiley and Sons
	2. Fox, R. L., Optimization Methods for Engineering Design, Addison We	esley
Reference Books	1. H N Wagner, Operations Research, Prentice Hall	
	2. N D Vohra, Quantitative Techniques in Management, Tata McGraw-Hil	1
Mode of Evaluation	Internal and External Examinations	
Recommendation by	24.03.2018	
Board of Studies on		
Date of approval by	11.06.2018	
the Academic		
Council		

Unit-wise Course Outcome	Descriptions	BL Level	Employability (Em)/ Skill(S)/ Entrepreneurship (En)/ None (Use, for more than One)
C01	Students should be able to first develop a basic understanding of different optimization techniques and then apply them through numerical problems for some of the important techniques of classical optimization	3	S
CO2	Students should be able to understand the principles of optimization through linear programming and applying the learnings though numerical problems	3	S
CO3	Students should be able to understand the different techniques of one-dimensional optimization and applying the learnings though numerical problems	3	em
CO4	Students should be able to understand the different unconstrained optimization techniques and applying the learnings though numerical problems	2	em
CO5	Students should be able to understand the modern methods of optimization techniques and applying the learnings though numerical problems	2	em

Course	I	Program Outcomes (Course Articulation Matrix (Highly Program														Program			
Outcomes				Μ	lapped	Spec	Specific Educational												
					-							-	Outco	mes	Ou	Outcomes			
	Р	P P P P P P P P P P P P P P P P P P P													PE	PE	PE		
	0	0	0	0	0	0	0	0	0	Ο	Ο	12	1	2	0	O 2	O 3		
	1	2	3	4	5	6	7	8	9	10	11				1				
CO 1	3	3	3	3	2	0	0	2	0	1	1	2	3	2	3	2	1		
CO 2	3	2	3	3	2	0	0	2	0	1	2	1	3	1	3	2	2		
CO 3	3	3	2	3	2	0	0	2	0	1	2	2	3	2	2	2	2		
CO 4	2	3	2	3	3	0	0	2	0	1	1	2	3	2	3	2	1		
CO 5	2	2 3 3 3 2 0 0 1 0 1 2 2											3	2	2	2	2		
Avg	2. 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												1.8	2.6	2	1.3		

3 57 14 04		
ME4101	Title: Advanced Fluid Mechanics	LTPC
		3 1 0 4
Version No.	1.0	
Course Prerequisites	Nil	
Objectives	To understand the laws of fluid flow for ideal and viscous fluids and to represe	nt the real
	solid shapes by suitable flow patterns and to analyze the same for aerodynamic	S
	performances.	-
Unit No.	Unit Title	No. of hours
		(per Unit)
Unit I	Non Viscous Flow	7
Lagrangian and Eulerain	n Descriptions of fluid motion- Path lines, Stream lines, Streak lines, stream tub	es, velocity of
a fluid particle, types of	of flows, Equations of three dimensional continuity equation- Stream and Vel	locity potential
functions.		
Unit II	Potential Flow Theory	7
Condition for irrotation	nality, circulation and vorticity Accelerations in Carte systems normal	and tangential
accelerations, Euler's, B	ernoulli equations in 3D, Continuity and Momentum Equations.	-
Unit III	Principles of Viscous Flow	7
Derivation of Navier-St	oke's Equations for viscous compressible flow, Exact solutions to certain simple	cases: Plain
Poisoulle flow, Coutte f	low with and without pressure gradient, Hagen Poisoulle flow, Blasius solution.	
Unit IV	Boundary Layer Concepts	8
Prandtl's contribution to	o real fluid flows, Prandtl's boundary layer theory, Boundary layer thickness f	for flow over a
flat plate, Approximate	e solutions, Creeping motion (Stokes), Oseen's approximation - Von-Karm	an momentum
integral equation for lar	ninar boundary layer, Expressions for local and mean drag coefficients for different	fferent velocity
profiles.		
Unit V	Compressible Fluid Flow	7
Thermodynamic basics,	Equations of continuity, Momentum and Energy, Acoustic Velocity Derivation	on of Equation
for Mach Number, Flow	v Regimes, Mach Angle, Mach Cone, Stagnation State Area Variation, Property	y Relationships
in terms of Mach numb	er, Nozzles, Diffusers, Isothermal Flow in Long Ducts, Normal Compressible S	Shock, Oblique
Shock: Expansion and	Compressible Shocks, Supersonic.	
Text Books	1. Schlichting H, Layer Theory, Springer Publications	
	2. Yuman S.W, Foundations of Fluid Mechanics, Prentice-Hall of India	
Reference Books	1. D. Rama Durgaiah, Fluid Mechanics and Machinery, New Age Pub	
	2. William F. Hughes and John A. Brighton, Fluid Dynamics, Tata Mc.	
Mode of Evaluation	Internal and External Examinations	
Recommendation by	24.03.2018	
Board of Studies on		
Date of approval by	11.06.2018	
the Academic		
Council		

Unit-wise Course Outcome	Descriptions	BL Level	Employability (Em)/ Skill(S)/ Entrepreneur ship (En)/ None (Use, for more than One)
C01	Students should be able to understand about basics of fluid mechanics and concepts related to fluid statics.	3	S
CO2	Students should be able to know advanced concepts related to potential flow theory	3	S
CO3	Students should be able to understand the various concets related to principle to viscous flow.	2	S
CO4	Students should be able to understand the boundary layer concept in depth.	3	S
C05	Students should be able to understand concepts related to compressible fluid flow	3	em

Course	I	Progra	m Ou	tcome	s (Cou	ırse A	Program Program											
Outcomes				М	apped	- 3, M	-0)	Specific Educational										
													Outco	mes	Ou	Outcomes		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PSO	PSO	PEO	PE	PE	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	1	O 2	O 3	
CO 1	3	2	2	2	1	2	1	0	0	1	0	3	3	2	3	2	2	
CO 2	3	2	1	2	3	1	1	0	0	0	0	3	3	2	3	1	2	
CO 3	3	3	3	1	2	2	2	0	0	0	1	3	3	3	3	2	2	
CO 4	3	3	3	1	1	1	1	0	0	0	1	3	3	3	3	1	3	
CO 5	3	3	2	2	2	2	2	0	0	0	1	3	3	3	3	2	3	
Avg	2. 6	2.8	2.4	1.6	1.8	1.6	1. 5	0	0	.3	1.6	1.8	3	1.8	2.6	2	1.3	

ME4102	Title: Advanced Thermodynamics	LTPC
		3 1 0 4
Version No.	1.0	
Course Prerequisites	Nil	
Objectives	To develop the ability to use the thermodynamics concepts for vario	us applications like
	availability analysis and thermodynamic relations, to analyses the rea	al gas behavior and
	chemical thermodynamics.	1
Unit No.	Unit Title	No. of hours
		(per Unit)
Unit I	Recapitulation of fundamentals	7
Basic definition and concep	ts; The basic laws of Thermodynamics, Entropy flow and entropy pro	duction, 3rd law of
Thermodynamics, Availabili	ty in steady flow open system and in a closed system, Irreversibility and	effectiveness
	Properties of pure substances	7
P-V-T surfaces, phase diag	ram, phase changes, various properties diagram, 1st order phase transi	tion and 2nd order
phase transition, Clapeyron	is equation, Entrentest's equations, Maxwell's equations, equation f	or internal energy,
enthalpy, entropy, specific h	eat and joule Thompson coefficient, Bridgeman tables for thermodynamic	
Different errortions of state	Real Gas behaviour	/ f 1
Different equations of state	- fugacity - compressibility - principle of corresponding states - Use of	i generalized charts
property relations for system	s of variable composition. Partial molar properties. Real as mixtures. I	deal solution of real
gases and liquid activity	s of variable composition. Fariar motal properties. Real gas mixtures - I	omponents
gases and fiquid - activity - e	Statistical thermodynamics	
Microstates and Macrostates	thermodynamic probability - degeneracy of energy levels - Maxwell	– Boltzman Fermi
Diarc and Bose-Einstein stat	istics microscopic interpretation of heat and work evaluation of entropy	partion function
Unit V	Chemical thermodynamics	7
Gibb's theorem. Gibbs funct	ion of mixture of inert ideal gases. Chemical equilibrium. Thermodynam	ic equation for
phase, Degree of reaction, ec	juation of reaction, law of mass action, heat of reaction and Vant Hoff Isc	ber, Phase
Equilibrium for a Single-Con	mponent System and Multi-Component System	,
Text Books	1. P.K. Nag, Basic and Applied Thermodynamics, TMH	
	2. Holman, Thermodynamics, Mc Graw Hill	
Reference Books	1. Michael Boles and Yunus Cengel, Thermodynamics: An Engineering	g Approach, TMH
	2. G.J. Van Wylen, Thermodynamics	
	3. M. Zemansky, Heat and Thermodymics	
	4. Sonntag R.E. and Van Wylen, G., Introduction to Thermodynamics,	Classical and
	Statistical Themodynamics, John Wiley and Sons.	
Mode of Evaluation	Internal and External Examinations	
Recommendation by	24.03.2018	
Board of Studies on		
Date of approval by the	11.06.2018	
Academic Council		

Unit-wise Course Outcome	Descriptions	BL Level	Employability (Em)/ Skill(S)/ Entrepreneurship (En)/ None (Use , for more than One)
CO1	Students should be able to understand fundamental concepts of thermal engineering	3	Em
CO2	Students should be able to understand the advanced properties of pure substance and able to apply different equations.	3	S
CO3	Students should able to understand the application of thermodynamics in real gas behaviour.	3	S
CO4	Students should able to apply the basic knowledge of thermodynamics to understand the statical thermodynamics	3	S
CO5	Students should be able to understand chemical thermodynamics and able to analyse different reactions	3	em

<u>CO-PO Mapping for ME4102</u>

Course]	Progra	am Ot	itcom	es (Co	ourse A	Program Program										
Outcomes				Ν	<i>lappe</i>	d- 3, N	Moder	rate-2	, Low	/-1, No	t relate	ed-0	Specific Educational				l
)									Outcomes Outcor			itcomes	
	Р	P P P P P P P P P P P P PO													PE	PE	PE
	0	0	0	0	0	0	0	0	0	0	0	12	1	2	0	0	O 3
	1	2	3	4	5	6	7	8	9	10	11				1	2	
CO 1	3	2	3	1	0	2	0	0	0	0	0	3	2	2	1	3	3
CO 2	3	2	3	3	0	2	2	0	0	0	0	3	3		3	3	3
CO 3	2	3	3	3	0	3	2	3	0	0	2	3	3	2	3	3	3
CO 4	2	2	3	2	0	3	3	3	0	1	2	3	3	2	3	3	3
CO 5	3	3 3 2 2 1 3 0 0 0 0 3										3	3	2	2	3	2
Avg	2. 6	2.8	2.4	2.1	0.2	2.6	1. 5	0	0	.3	1.6	1.8	3	1.8	2.6	2	1.3

ME4103	Title: Advanced Heat Transfer	LTPC
		3 1 0 4
Version No.	1.0	
Course Prerequisites	Nil	
Objectives	To develop the ability to use the heat transfer concepts for thermal anal	ysis and sizing of
	heat exchangers and to achieve an understanding of the basic concepts of	of phase change
	processes.	
Unit No.	Unit Title	No. of hours
		(per Unit)
Unit I	Introduction	7
Brief Introduction to differ	rent Modes of heat transfer- Conduction- General heat conduction e	equation, Boundary
conditions, Steady simplifie	ed heat transfer in Cartesian coordinates, Finned surfaces- 1-D Heat tr	ansfer with internal
heat generation.		-
Unit II	Transient heat conduction	8
Lumped system analysis, He	eisler charts, Semi-infinite solid, Product solution- 2D, steady state heat	conduction, Use of
conduction shape factors-Tra	insight heat conduction, Analytical solution-Finite Difference methods f	or Heat Conduction
Problems- I D and 2 D stea	ady state and Unsteady heat conduction, Implicit and Explicit methods.	0
		15
Concept of boundary layer-	Hydrodynamic and Thermal boundary layer concepts-Equations of Motio	n and Energy-
Analogies between Heat and	Momentum Transfer External flows and integral methods for flow over	nal numbers,
Analogies between Heat and	tions to various geometrics	a nat plate-
Dimensionless parameters of	Free convection-An Approximate Analysis of Laminar Free Convection	on Vertical Plate
Free convection on a Horizon	ntal Plate Cylinder and Sphere- Combined free and forced convection	on vertical i late-
Unit IV	Boiling and condensation	5
Boiling curve Correlations	Nusselt's theory of film condensation on a vertical plate Assumptions	and correlations of
film condensation for differe	nt geometrics.	
Unit V	Radiation	8
Concept of View factor- Me	thods of Determining View factors-Radiant heat exchange in Grey, Nor	n- Grey bodies with
Transmitting, Reflecting and	Absorbing media- Secular surface, gas radiation, Radiation from flames	,
Text Books	1. Yunus A.Cengal, Heat and Mass Transfer: A practical Approach, Tat	ta McGraw - Hill
	2. O P Single, Heat and Mass Transfer, Macmillan India Ltd.	
Reference Books	1. P.S. Ghoshdastidar, Heat Transfer, Oxford Press	
	2 Sarit K Das Engg Heat and Mass Transfer Dhannat Rai	
	3 F P Incronera and D P DeWitt Fundamentals of Heat and Mass T	ransfer John Wiley
	and Sons	ransier, sonn winey
Mode of Evaluation	Internal and External Examinations	
Recommendation by	24.03.2018	
Board of Studies on		
Date of approval by the	11.06.2018	
Academic Council		

Unit-wise Course Outcome	Descriptions	BL Level	Employability (Em)/ Skill(S)/ Entrepreneurship (En)/ None (Use , for more than One)
C01	Students should be able to Understand the modes of heat transfer and its governing laws and also acquire skills to calculate heat transfer in steady state conditions in one dimension	3	Em
CO2	Students should be able to understand and calculate the 1D and 2D heat transfer in transient conditions and also able to solve problems using finite difference technique.	3	S
C03	Students should be able to analyse convective heat transfer in different geometries and should know the use of emperical relations	3	S
CO4	Students should able to analyse different phase change heat transfer.	3	S
CO5	Students should be able to evaluate heat transfer by radiation from different complex geometries.	4	S

Course	P	Prograi	n Out	comes	(Cou	Prog	am	Program									
Outco				3, 1	Moder	ate- 2,	Spec	ific	Educational								
mes													Outco	mes	Out		
	PO	PO												PSO	PEO	PE	PE
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	1	O 2	O 3
CO 1	3 2 3 1 0 2 0 0 0 0 3											3	2	2	1	3	3
CO 2	3	2	2	3	0	2	2	0	0	0	0	3	3	1	3	3	3
CO 3	3	3	2	3	0	2	2	3	0	0	2	3	3	2	3	3	3
CO 4	3	3	3	3	0	3	2	3	0	0	2	3	3	2	3	3	3
CO 5	3	3 3 2 2 0 3 0 0 0 0 0											3	2	2	3	2
Avg	3	2.8	2.2	2.2	0	2.3	1. 1	1.1	0	0	0.5	3	2.8	1.8	2.2	3	2.8

ME4108	Title: Instrumentation and Measurements	LTPC					
		3 0 0 3					
Version No.	1.0						
Course Prerequisites	Nil						
Objectives	To develop the understanding of methods for measuring various thermal c	uantities using					
	various instruments and principles involved.						
Unit No.	Unit Title	No. of hours					
		(per Unit)					
Unit I	Measurement characteristics	7					
Instrument Classification, Cl	haracteristics of Instruments - Static and dynamic, experimental error ana	lysis, Systematic					
and random errors, Statistic Reliability of instruments	al analysis, Uncertainty, Experimental planning and selection of measu	ring instruments,					
Unit II	Microprocessors based measurements						
Data logging and acquisition	- elements of microcomputer interfacing, intelligent instruments in use						
Unit III Measurement of physical quantities							
Measurement of thermo-phys	sical properties, instruments for measuring temperature, pressure and flow,	use of sensors					
for physical variables.							
Unit IV	Advanced measurement techniques	8					
Shadowgraph, Schlieren, Ir Telemetry in measurement.	nterferometer, Laser Doppler Anemometer, Hot wire Anemometer, He	eat flux sensors,					
Unit V	Measurement analysers	8					
Orsat apparatus, Gas Analyze	ers, Smoke meters, gas chromatography, spectrometry						
Text Books	1. Raman, C.S., Sharma, G.R., Mani, V.S.V, Instrumentation Devices and	Systems, Tata					
	McGraw Hill						
Reference Books	1. Holman, Experimental methods for engineers, J.P. McGraw-Hill						
	2. Barney, Intelligent Instrumentation, Prentice Hall						
	3. Prebrashensky, V., Measurements and Instrumentation in Heat Enginee	ring, MIR					
	Publishers						
	4. Morris, A.S., Principles of Measurements and Instrumentation, Prentice	Hall					
Mode of Evaluation	Internal and External Examinations						
Recommendation by	24.03.2018						
Board of Studies on							
Date of approval by the	11.06.2018						
Academic Council							

Unit-wise Course Outcome	Descriptions	BL Level	Employability (Em)/ Skill(S)/ Entrepreneurship (En)/ None (Use , for more than One)
C01	Students should be able to understand various measurement instruments and their Characteristics	2	Em
CO2	Students should be able to Understand the working and use of microprocessor-based instruments	3	Em
CO3	Students should be able to understand the instruments used to measure the physical quantities	2	em
CO4	Students should be able to understand the advanced measurement technique such as heat flux sensors, Hot wire Anemometer etc.	2	S
C05	Students should be able to understand the Working Principle of Measurement analyzers such as Orsat Apparatus, Gas Analyzers etc.	2	S

Course	F	Program Outcomes (Course Articulation Matrix (Highly Mapped-										ed-	Program		Program		
Outco		3, Moderate- 2, Low-1, Not related-0)											Specific		Educational		
mes											Outco	mes	Outcomes				
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PEO	PE	PE
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	1	O 2	O 3
CO 1	3	2	3	1	0	2	0	0	0	0	0	3	2	2	1	3	3
CO 2	3	2	2	3	0	2	2	0	0	0	0	3	3	1	3	3	3
CO 3	3	3	2	3	0	2	2	3	0	0	2	3	3	2	3	3	3
CO 4	3	3	3	3	0	3	2	3	0	0	2	3	3	2	3	3	3
CO 5	3	3	2	2	0	3	0	0	0	0	0	3	3	2	2	3	2
Avg	3	2.8	2.2	2.2	0	2.3	1. 1	1.1	0	0	0.5	3	2.8	1.8	2.2	3	2.8

ME4140	Title: Advanced Thermal Engineering Lab	LTPC								
		0 0 2 1								
Version No.	1.0									
Course Prerequisites	equisites Nil									
Objectives	The lab is mainly intended to conduct experiments on various Therm	nal Engineering devices to								
	study the performance and its applications.									
	List of Experiments									
1. Study Compressibility fa	ctor measurement of different real gases.									
2. To calculate Dryness fra	ction estimation of steam.									
3. Performance analysis of	two stage reciprocating compressor.									
4. Performance test and ana	lysis of exhaust gases of an I.C. Engine.									
5. Heat Balance sheet, Volu	metric Efficiency and air fuel ratio estimation of an I.C. Engine.									
6. Performance analysis of	Air conditioning unit.									
7. Performance analysis of	heat pipe.									
8. Study of solar flat plate of	collector.									
Mode of Evaluation	Internal and External Examinations									
Recommendation by	24.03.2018									
Board of Studies on										
Date of approval by the 11.06.2018										
Academic Council										

Unit-wise Course Outcome	Descriptions	BL Level	Employability (Em)/ Skill(S)/ Entrepreneurship (En)/ None (Use , for more than One)
CO1	Students should able to understand intricacies of solar plate collector and behaviour of different real gas.	2	Em
CO2	students should able to evaluate the performance parameters of IC engine, heat pipe, AC unit and receprocating compressor	5	S
CO3	students should able to evaluate the dryness fraction of steam	5	S

Course	F	Program Outcomes (Course Articulation Matrix (Highly Mapped-											Program		Program		
Outco		3, Moderate- 2, Low-1, Not related-0)											Specific		Educational		
mes											Outcomes		Outcomes				
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PEO	PE	PE
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	1	O 2	O 3
CO 1	3	3	0	0	0	2	0	0	0	0	0	3	2	1	3	3	1
CO 2	3	3	1	3	0	2	0	0	0	0	0	3	3	2	3	2	3
CO 3	3	3	2	2	0	2	2	0	0	0	0	3	3	2	2	2	3
Avg	3	3	1	1.6	0	2	0. 6	0	0	0	0	3	2.8	1.6	2.6	2.6	2.6

ME4201	Title: Simulation Modeling and Analysis	LTPC							
		3 2 0 4							
Version No.	1.0								
Course Prerequisites	Nil								
Objectives	To develop representational modes of real processes and systems.								
Unit No.	Unit Title	No. of hours							
		(per Unit)							
Unit I	Introduction	6							
A review of basic probabilit	ty and statistics, random variables and their properties, Estimation of m	neans variances and							
correlation.		ſ							
Unit II	Physical Modeling	6							
Concept of System and en	vironment, Continuous and discrete systems, Linear and non-linear	systems, Stochastic							
activities, Static and Dynam	ic models, Principles of modeling, Basic Simulation modeling, Role of s	simulation in model							
evaluation and studies, advar	ntages of simulation	0							
	System Simulation	8							
Techniques of simulation, Monte Carlo method, Experimental nature of simulation, Numerical computation techniques,									
Continuous system models	, Analog and Hybrid simulation, Feedback systems, Computers in	simulation studies,							
Simulation software package	S.	0							
Unit IV	System Dynamics	<u> </u>							
Growth and Decay models,	Logistic curves, System dynamics diagrams. Probability Concepts in Sir	nulation: Stochastic							
variables, discrete and conti	nuous probability functions, Random numbers, Generation of Random	numbers, Variance							
reduction techniques, Detern	nination of length of simulation runs.								
Unit V	Simulation of Mechanical Systems	8							
Simulation of Mechanical Sy	stems: Building of Simulation models, Simulation of translational and ro	tational mechanical							
systems, Simulation of hydra	ulic systems.								
Text Books	1. Bernard Zeigler Tag Kim Herbert Praehofer, Theory of Modeling and	d Simulation,							
	Springer								
	2. VP Singh, System Modelling and Simulation, New Age International	Limited							
	Publication								
Reference Books	1. Mohsen Guizani, Ammar Rayes, Bilal Khan, Ala Al-Fuqaha, Networ	k Modeling and							
	Simulation: A Practical Perspective								
	2. Birta, Luois, Modelling and Simulation, Springer								
Mode of Evaluation	Internal and External Examinations								
Recommendation by	24.03.2018								
Board of Studies on									
Date of approval by the	11.06.2018								
Academic Council									

Unit-wise Course Outcome	Descriptions	BL Level	Employability (Em)/ Skill(S)/ Entrepreneurship (En)/ None (Use , for more than One)
C01	Students should be able to understand the basic probability and statistic, random variables and their properties	2	Em
CO2	Students should be able to understand the Physical modeling methods and Various techniques	2	Em
CO3	Students should be able to study the various methods which is use in system simulation	2	S
CO4	Students should be able to understand the concept and techniques of system dynamics	2	S
CO5	Students should be able to understand the methods which is use to for the simulation of mechanical system	2	S

Course	P	Program Outcomes (Course Articulation Matrix (Highly Mapped-										ed-	Program		Program		
Outco		3, Moderate- 2, Low-1, Not related-0)										Specific		Educational			
mes												Outco	mes	Outcomes			
	PO	РО	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PSO	PSO	PEO	PE	PE
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	1	O 2	O 3
CO 1	2	3	2	3	3	0	0	0	0	0	0	3	2	2	2	2	3
CO 2	2	2	3	3	2	0	0	0	0	0	0	3	2	2	2	2	3
CO 3	3	3	2	3	2	0	0	0	0	0	0	3	2	2	2	3	3
CO 4	2	3	2	2	2	0	0	0	0	0	0	3	2	3	2	2	2
CO 5	2	3	2	2	3	0	0	0	0	0	0	2	2	3	3	3	3
Avg	2.2	2.8	2.2	2.6	2.	0	0	0	0	0	0	3	2	2.2	2.2	2.2	2.8

ME4240	Title: Simulation Lab	LTPC								
		0 0 2 1								
Version No.	1.0									
Course Prerequisites	Nil									
Objectives	To learn the modeling and simulation analysis of various thermal engin	eering application								
	using analysis software.									
List of Experiments										
1. Study of Simulation software.										
2. Analysis of Discharge of	f Water from a Reservoir.									
3. Simulation of 2-D stead	ly state heat conduction in a slab.									
4. Simulation of counter fl	ow heat exchanger.									
5. Analysis of Transient Te	emperature Distribution in a Slab.									
6. Analysis of Temperatur	e Distribution on an Insulated Wall.									
7. Analysis of auto pilot system.										
8. Analysis of servomotor system.										
Mode of Evaluation Internal and External Examinations										

Mode of Evaluation	Internal and External Examinations
Recommendation by	24-03-2018
Board of Studies on	
Date of approval by the	11-06-2018
Academic Council	

Unit-wise Course Outcome	Descriptions	BL Level	Employability (Em)/ Skill(S)/ Entrepreneurship (En)/ None (Use, for more than One)
CO1	Students should be able to study the simulation software	2	Em
CO2	Students should be able to simulate the various heat transfer processes	3	S
CO3	Students should be able to analysis of various heat transfer instruments by using simulation software	4	S

<u>CO-PO Mapping for ME4240</u>

Cours	I	Program Outcomes (Course Articulation Matrix (Highly												Program		Program	
e		Mapped- 3, Moderate- 2, Low-1, Not related-												eific	Educational		
Outc				0)								Outco	omes	Ou	itcomes	
omes	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	РО	PSO	PSO	PE	PE	PE
	0	0	0	0	0	0	0	0	0	Ο	Ο	12	1	2	0	0	O 3
	1	2	3	4	5	6	7	8	9	10	11				1	2	
CO 1	2	3	2	2	3	0	0	0	0	0	0	3	3	2	3	2	3
CO 2	3	3	2	2	2	0	0	0	0	0	0	2	3	2	3	2	3
CO 3	2	3	3	3	2	0	0	0	0	0	0	2	3	2	3	2	3
Avg	2. 6	3	2.3	2.3	2.3	0	0	0	0	0	0	2.3	3	2	3	2	3

ME4307	Title: Research Methodology	LTPC
		2 0 0 2
Version No.	1.0	
Course Prerequisites	Nil	
Objectives	Understand some basic concepts of research and its methodologies	Select and define
	appropriate research problem and parameters Write a research report and the	hesis
Unit No.	Unit Title	No. of hours
		(per Unit)
Unit I	Introduction	4
Objectives of Research - Lin	nitations in Research – Qualities of a Good Research Worker – Criteria of	of Good Research -
Limitations of Research Conc	cept of Applied and Basic research – Quantitative and Qualitative Research	Techniques – Need
for theoretical frame work – I	Hypothesis development – Hypothesis testing with quantitative data. Resear	ch design – Purpose
of the study: Exploratory, Des	criptive, Hypothesis Testing.	0 1
Unit II	Experimental Design	5
Laboratory and the Field Exp	beriment – Internal and External Validity – Factors affecting Internal valid	ity. Measurement of
variables – Scales and measur	ements of variables. Developing scales – Rating scale and attitudinal scales	– Validity testing of
scales – Reliability concept in	scales being developed – Stability Measures.	, ,
Unit III	Data Collection	5
Interviewing, Questionnaires,	etc. Secondary sources of data collection. Guidelines for Questionnaire	Design – Electronic
Questionnaire Design and Sur	rveys. Special Data Sources: Focus Groups, Static and Dynamic panels. Re	view of Advantages
and Disadvantages of variou	s Data-Collection Methods and their utility. Sampling Techniques - Pro	obabilistic and non-
probabilistic samples. Issues	of Precision and Confidence in determining Sample Size. Hypothesis testin	ig, Determination of
Optimal sample size.		
Unit IV	Multivariate Statistical Techniques	5
Data Analysis – Factor Ana	alysis – Cluster Analysis -Discriminant Analysis – Multiple Regression	and Correlation -
Canonical Correlation – Appl	ication of Statistical(SPSS) Software Package in Research	
Unit V	Research Report	5
Purpose of the written report	- Concept of audience - Basics of written reports. Integral parts of a repor	t – Title of a report,
Table of contents, Abstract	t, Synopsis, Introduction, Body of a report - Experimental, Results	and Discussion -
Recommendations and Impler	nentation section – Conclusions and Scope for future work	
Text Books	1. C R Kothari, Research Methodology, New Age International	
	2. C. Murthy, Research Methodology, Vindra Publications Ltd.	
Reference Books	1. Donald Cooper and Pamela Schindler, Business Research Methods, TM	GH
	2. Alan Bryman and Emma Bell, Business Research Methods, Oxford Uni	versity Press
	3. Ranjit Kumar, Research Methodology, Sage Publications, London	-
Mode of Evaluation	Internal and External Examinations	
Recommendation by	06.06.2019	
Board of Studies on		
Date of approval by the	13.07.2019	
Academic Council		

Unit-wise Course Outcome	Descriptions	BL Level	Employability (Em)/ Skill(S)/ Entrepreneurship (En)/ None (Use , for more than One)
CO1	Students should be able to Objectives of Research, Research Techniques, Hypothesis development	3	S,Em
CO2	Students should be able to Internal and External Validity, Reliability concept in scales, Stability Measures.	2	S
CO3	Students should be able to Interviewing, Questionnaires, Probabilistic, Precision and Optimal sample size.	3	S
CO4	Students should be able to Data Analysis, Factor Analysis, Cluster Analysis, Statistical (SPSS) Software	2	S
CO5	Students should be able to written reports, Abstract, Synopsis, Experimental, Results and Conclusions	2	S,Em

Course	F	Program Outcomes (Course Articulation Matrix (Highly Mapped-												am	Program		
Outco		3, Moderate- 2, Low-1, Not related-0)											Specific		Educ	cational	
mes													Outcomes		Outcomes		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PEO	PE	PE
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	1	O 2	O 3
CO 1	3	2	2	1	3	0	3	0	2	2	2	3	3	0	1	2	2
CO 2	3	2	1	2	0	0	0	0	1	2	0	2	3	1	1	2	3
CO 3	3	3	2	2	2	0	2	0	1	0	2	0	3	3	1	2	2
CO 4	3	2	3	3	2	0	1	0	1	1	2	0	3	2	1	1	3
CO 5	3	2	3	3	2	0	2	0	2	2	0	0	3	2	2	3	3
Avg	3	2.2	2.2	2.2	2.2	0	1. 8	0	1. 6	1.4	1.3	1	3	2.2	1.2	2	2.6

ME4340	Title: Research Methodology Lab	L T P C 0 0 2 1							
Version No.	1.0								
Course Prerequisites	Nil								
Objectives	To learn to prepare reports and charts								
	List of Experiments								
 Basics of Excel- da Functions in excel, Graphical presentat SPSS, opening SPS 	ta entry, editing and saving, establishing and copying a formula. copy and paste and exporting to MS word document tion of data -Histogram, frequency polygon, pie-charts and bar diagrams. S, layout, menu and icons analyzing the data using different statistical tech	niques.							
Mode of Evaluation	Internal and External Examinations								
Recommendation by Board of Studies on	Recommendation by Board of Studies on06.06.2019								
Date of approval by the Academic Council13.07.2019									

Unit-wise Course Outcome	Descriptions	BL Level	Employability (Em)/ Skill(S)/ Entrepreneurship (En)/ None (Use, for more than One)
CO1	Students should be able to understand and use the Basics Excel commands	3	S, Em
CO2	Students should be able to understand the Graphical presentation of data -Histogram, frequency polygon, pie- charts and bar diagrams	4	S
CO3	Students should be able to understand the SPSS, layout, menu and analyzing the data using different statistical techniques.	4	S

Course	F	rogra	m Out	comes	(Cou	rse Ar	ed-	Prog	ram	Pre	Program						
Outco		3, Moderate- 2, Low-1, Not related-0)												Specific Educational			
mes		, , , , , , , , , , , , , , , , , , , ,											Outco	mes	Out	tcomes	
	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PSO	PSO	PEO	PE	PE
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	1	O 2	O 3
CO 1	3	3	2	2	2	0	2	0	0	0	2	2	3	3	0	2	2
CO 2	3	2	3	3	2	0	1	0	0	1	2	2	3	2	1	1	3
	5	-	5	5	-	Ŭ	-	Ŭ	Ű	-		-	5	-	-	-	5
CO 3	3	3	3	3	3	0	2	0	0	2	0	2	3	2	2	3	3
Avg	3	2.6	2.6	2.6	2.3	0	1. 6	0	0	1	1.2	2	3	2.2	1	2	2.3

ME4202	Title: Cryogenic Engineering	LTPC
		3 0 0 3
Version No.	1.1	
Course Prerequisites	Nil	
Objectives	To build a foundation in the fundamentals of cryogenics and to encou	rage a hands on
	approach to solving cryogenic problems	
Unit No.	Unit Title	No. of hours
		(per Unit)
Unit I	Introduction to cryogenic engineering	7
Insight on Cryogenics, Prop	erties of Cryogenic fluids, Material properties at Cryogenic Temperatur	es. Applications of
Cryogenics- Mechanical, Sp	ace, Medicine, Gas industry, High energy physics, Superconductivity	_
Unit II	Liquefaction Cycle	8
Carnot Liquefaction Cycle,	F.O.M. and Yield of Liquefaction Cycles. Inversion Curve- Joule Thor	nson, Effect. Linde
Hampson Cycle, Precooled	d Linde Hampson Cycle, Claude Cycle Dual Pressure Cycle, Or	tho-Para hydrogen
conversion, Critical Compoi	nents in Liquefaction Systems	
Unit III	Separation of Cryogenic Gases	7
Binary Mixtures, T-C and	H-C Diagrams, Principle of Rectification, Rectification Column	, Analysis-McCabe
Iniele Method , Adsorption	Systems for purification.	7
Unit IV	Cryogenic refrigerants	/
Tube Refrigerators Regene	erators used in Cryogenic Refrigerators, Magnetic Refrigerators	ryocoolers, ruise
Unit V	Handling of cryogens	7
Cryogenic Dewar design, C	Cryogenic Transfer Lines, Insulations in Cryogenic Systems, Ope	erating principle of
different Types of Vacuum	Pumps, Instruments to measure Flow, Level and Temperature operating	principles.
Text Books	1. Randall F. Barron, Cryogenic Systems, McGraw-Hill	
	2. Klaus D. Timmerhaus and Thomas M. Flynn, Cryogenic Pro	cess Engineering,
Defenses a Declar	Plenum Press New York	
Kelerence Books	1. Robert W. Vance, Cryogenic Technology, John Wiley and Sons	DIII I comin a
	2. Mamata Mukhopadnay, Fundamentals of Cryogenic Engineering, F	'HI Learning
Made of Evolution	5. K.D. Scou, Cryogenic Engineering, Van Nostrand and Co.	
Nide of Evaluation		
Reconfinentiation by Board of Studies on	00.00.2017	
Date of approval by the	13.07.2019	
Academic Council	15.07.2017	

Unit-wise Course Outcome	Descriptions	BL Level	Employability (Em)/ Skill(S)/ Entrepreneurship (En)/ None (Use , for more than One)
C01	Students should be able to understand fundamentals of cryogenic engineering.	3	Em
CO2	Students should be able to understand the liquefaction cycles and its related terminologies	2	none
CO3	Students should be able to understand the separation storage and transportation of cryogenic liquids	3	Em
CO4	Students should be able to understand the different cryogenic refrigerants	2	S
CO5	Students should be able to understand the handling of cryogen and its operating principles.	2	S

Course	F	Program Outcomes (Course Articulation Matrix (Highly Mapped-												am	Program		
mes		3, Moderate- 2, Low-1, Not related-0)												mes	Out		
	РО	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	РО	PSO	PSO	PEO	PE	PE
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	1	O 2	O 3
CO 1	3	2	2	1	3	0	3	0	2	2	2	3	3	0	1	2	2
CO 2	3	2	1	2	0	1	0	0	1	2	0	2	3	1	1	2	3
CO 3	3	3	2	2	2	1	2	0	1	0	2	1	3	3	1	2	2
CO 4	3	2	3	3	2	1	1	0	1	1	2	1	3	2	1	1	3
CO 5	3	2	3	3	2	0	2	0	2	2	0	1	3	2	2	3	3
Avg	3	2.2	2.2	2.2	2.2	0.6	1. 8	0	1. 6	1.4	1.3	1.8	3	2.2	1.2	2	2.6

ME4203	Title: Transit Refrigeration	LTPC
		3 0 0 3
Version No.	1.1	
Course Prerequisites	Nil	
Objectives	To present a problem oriented in depth knowledge of Food Preservation	and Transport and
	address the underlying concepts and methods.	
Unit No.	Unit Title	No. of hours
		(per Unit)
Unit I	Introduction	7
Microbiology of Food Produ	icts, Mechanism of food spoilage critical microbial growth requirements	, Design for control
of microorganisms, The role	of HACCP, Sanitation, Regulation and standards	
Unit II	Processing	8
Thermodynamic properties	and Transfer properties, Water content, Initial freezing tempera	ture, Ice fraction,
Transpiration of fresh fruits	and vegetables, Food Processing techniques for Dairy products, Poultr	y, Meat, Fruits and
Vegetables		_
Unit III	Freezing and Drying	7
Pre-cooling, Freeze drying	principles, Cold storage and freezers, Freezing drying limitations, Irra	diation techniques,
Cryofreezing, Numerical an	d analytical methods in estimating Freezing, Thawing times, Energy co	onservation in food
industry.		_
Unit IV	Cold Storage Design and Instrumentation	7
Initial building consideration	h, Building design, Specialized storage facility, Construction methods, Re	frigeration systems,
Insulation techniques, Contro	ol and instrumentation, Fire protection, Inspection and maintenance	
Unit V	Transport	7
Refrigerated transportation,	Refrigerated containers and trucks, Design features, Piping and Rol	e of cryogenics in
freezing and transport		
Text Books	1. Alan Rodes, Principles of Industrial Microbiology, Pregmon Interna	tional Pub.
	2. Ibraham Dincer, Heat Transfer in Food Cooling Applications, Tailo	r and Francis Pub.
Reference Books	1. Clive V.I. Dellino, Cold and Chilled Storage Technology, Van	Nostrand Reinhold
	Pub., New York,	
	2. C.P. Arora, Refrigeration and Air conditioning, McGraw-Hill Pub.	
Mode of Evaluation	Internal and External Examinations	
Recommendation by	06-06-2019	
Board of Studies on		
Date of approval by the	13.07.2019	
Academic Council		

Unit-wise Course Outcome	Descriptions	BL Level	Employability (Em)/ Skill(S)/ Entrepreneurship (En)/ None (Use , for more than One)
CO1	Students should be able to understand the fundamentals of transit refrigeration and identify different areas of Food Processing	3	S,Em
CO2	Students should be able to understand the thermodynamic properties and transfer properties related to transit refrigeration.	3	S,Em
CO3	Students should be able to understand the methodology of freezing and drying.	3	S,Em
CO4	Students should be able to understand the cold storage design and instrumentation.	2	S
CO5	Students should be able to understant the preservation and transport and also can find the applications of all the areas in day to day life.	2	S,Em

Course]	Program Outcomes (Course Articulation Matrix (Highly											Program Program				
Outcomes		Mapped- 3, Moderate- 2, Low-1, Not related-0											Spec	cific	Edu	cational	
)									Outcomes Outcomes				
	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	PO	PSO	PSO	PE	PE	PE
	0	0	0	0	0	0	0	0	0	0	Ο	12	1	2	0	0	O 3
	1	2	3	4	5	6	7	8	9	10	11				1	2	
CO 1	3	3	2	1	1	1	3	0	1	1	2	3	3	1	3	2	2
CO 2	3	3	1	2	2	1	0	0	1	0	0	2	3	2	2	2	3
CO 3	3	3	1	2	1	1	2	0	1	0	2	2	3	3	3	2	2
CO 4	3	2	3	3	1	1	1	0	1	1	2	2	3	2	3	1	3
CO 5	3	2	3	3	2	1	2	0	1	1	0	2	3	2	2	3	3
Avg	3	2.2	2.2	2.2	1.3	1	1. 8	0	1	0.5	1.3	2.2	3	2.2	2.6	2.2	2.6

ME4206	Title: Refrigeration Machinery	LTPC
		3 0 0 3
Version No.	1.1	
Course Prerequisites	Nil	
Objectives	To master how refrigeration components and systems. To identify and	l explain various
	system accessories and controls in refrigeration systems.	
Unit No.	Unit Title	No. of hours
		(per Unit)
Unit I	Refrigerant compressors	7
Hermetic compressors - I	Reciprocating, Rotary, Scroll compressors, Open type compressors	s - Reciprocating,
Centrifugal, Screw Compre	ssors. Semi hermetic compressors - Construction, working and Energy	Efficiency aspects.
Applications of each type.		T
Unit II	Refrigeration system components	7
Evaporators and condensers	-Different types, capacity control, circuitry, Oil return, Oil separators- I	Different types
Refrigerant driers strainers,	Receivers, Accumulators, Low pressure receivers, Air Washers, Spray	ponds.
Unit III	Hydronic systems	8
Water piping in Chilled W	ater Systems, Multiple Fan Coil Units, Condensers - Multiple Conde	ensers and Cooling
Towers. System component	nts, Expansion tank, Balancing valves, Pumping systems, Pump	selection, Freeze
prevention		
Unit IV	Appliances and accessories	7
Special components for ref	rigeration, air Conditioning in Automobiles, Railway Wagons, Marin	e Vessels, Aircraft
and Other Commercial App	lications.	
Unit V	System accessories and controls	7
Refrigerant Pumps, Coolin	ng Tower fans, Compressor Motor protection devices, Oil equa	lizing in multiple
evaporators. Different Defro	osting and capacity control methods and their implications.	
Text Books	1. R.J. Dosset, Principles of Refrigeration, John Wiley and Sons	
	2. Hains, Automatic Control of Heating and Airconditioning, J.B. Mc	: Graw Hill
Reference Books	1. Althose, A.D. and Turnquist, C.H, Good Heart, Modern	Refrigeration and
	Airconditioning, Wilcox Co.Inc.	
	2. ASHRAE Hand book - Fundamentals and Equipments	
Mode of Evaluation	Internal and External Examinations	
Recommendation by	06.06.2019	
Board of Studies on		
Date of approval by the	13.07.2019	
Academic Council		

Unit-wise Course Outcome	Descriptions	BL Level	Employability (Em)/ Skill(S)/ Entrepreneurship (En)/ None (Use , for more than One)
CO1	Students should be able to understand basic concepts and working of compressors.	3	S,Em
CO2	Students should be able to understand refrigeration system component	2	S,Em
CO3	Students should be able to deeply understand various hydraulic system	3	S
CO4	Students should be able to understand appliances and accessories	3	S
CO5	Students should be able to know about various system accessories and controls.	3	S,Em

Course	F	Program Outcomes (Course Articulation Matrix (Highly Mapped-												ram	Program		
Outco		3, Moderate- 2, Low-1, Not related-0)											Spec	ific	Educ	cational	
mes													Outcomes		Outcomes		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PEO	PE	PE
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	1	O 2	O 3
CO 1	3	3	2	1	1	1	3	0	1	1	2	3	3	1	3	2	2
CO 2	3	3	2	2	2	1	0	0	1	0	0	2	3	2	2	2	3
CO 3	3	3	1	2	1	1	2	0	1	0	2	2	3	3	3	2	2
CO 4	3	2	2	2	1	1	1	0	1	1	2	2	3	2	3	1	3
CO 5	3	2	2	2	2	1	2	0	1	1	0	2	3	2	2	3	3
Avg	3	2.2	1.8	1.8	1.3	1	1. 8	0	1	0.5	1.3	2.2	3	2.2	2.6	2.2	2.6

ME4204	Title: Finite Element Analysis	LTPC
		3 0 0 3
Version No.	1.0	
Course Prerequisites	Nil	
Objectives	To gain a fundamental understanding of the finite element method for solv	ing boundary value
	problems and to learn important concepts of variation form, minimum pote	ential energy
	principles, and method of weighted residuals.	
Unit No.	Unit Title	No. of hours
		(per Unit)
Unit I	Introduction	8
Introduction to FEM: basic	concepts, historical back ground, application of FEM, general description,	comparison of fem
with other methods, variati	ional approach, Co-ordinates, basic element shapes, interpolation functi	on. Rayleigh- Ritz
method, properties of stiffnes	ss matrix, treatment of boundary conditions, solution of system of equations	, shape functions.
Unit II	1 D Structural Analysis	8
1-D structural problems, ax	ial bar element, stiffness matrix, load vector, temperature effects, Quadra	atic shape function.
Analysis of Trusses, Plane T	Truss and Space Truss elements. Analysis of beams, Hermite shape functio	ns, stiffness matrix,
Load vector, Problems analy	\$15.	
Unit III	2 D Structural Analysis	7
2-D problems ,CST, force ter	rms, Stiffness matrix and load vector, boundary conditions, Isoparametric el	ement quadrilateral
element, Shape functions, N	umerical Integration	-
	3 D Structural Analysis	6
3-D problems, Tetrahedran e	element, Jacobian matrix, Stiffness matrix.	
Unit V	Heat Conduction Analysis	7
Scalar field problems - 1-D I	Heat conduction, 1-D fin element, 2-D heat conduction Problems, Dynamic	considerations,
Dynamic equations- consiste	nt mass matrix-Eigen Values, Eigen Vector, Natural frequencies-mode shap	es-modal analysis.
Text Books	1. J. N. Reddy, An Introduction to Finite Element Methods, McGraw hill	1 0 1 11
	2. O.C. Alenkowitz, The Finite Element Method in Engineering Science, N	McGraw hill
Reference Books	1. S.S. Rao, The finite element methods in Engineering, Pergamon, New	York
	2. Robert Cook, Concepts and applications of finite element analysis, John	n Wiley and Sons
	3. K.J Bathe, Finite Element Procedures in Engineering analysis	
Node of Evaluation	Internal and External Examinations	
Recommendation by	24.05.2018	
Board of Studies on		
Date of approval by the	11.06.2018	
Academic Council		

Unit-wise Course Outcome	Descriptions	BL Level	Employability (Em)/ Skill(S)/ Entrepreneurship (En)/ None (Use , for more than One)
C01	Students should be able to develop the basic understanding of the fem and related concepts.	3	S,Em
CO2	Students should be able to apply the concepts to solve structural mechanics problems and to obtain finite element solution and compare with exact solution of simple one- dimensional problems.	3	S,
CO3	Students should be able to apply the concepts to solve structural mechanics problems and to obtain finite element solution and compare with exact solution two dimensional problems.	4	S
CO4	Students should be able to apply the concepts to solve structural mechanics problems and to obtain finite element solution and compare with exact solution three dimensional problems.	4	S
CO5	Students should be able to analyse heat conduction equations.	3	S

Course	F	Program Outcomes (Course Articulation Matrix (Highly Mapped-												am	Pre	ogram	
Outco		3, Moderate- 2, Low-1, Not related-0)												ific	Educ	cational	
mes													Outcomes		Out		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PEO	PE	PE
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	1	O 2	O 3
CO 1	3	3	2	2	2	1	1	0	0	0	2	3	3	1	3	2	2
CO 2	3	3	2	3	2	1	0	0	1	0	0	2	3	2	2	2	3
CO 3	3	3	1	3	2	1	1	0	0	0	2	2	3	3	3	2	2
CO 4	3	2	2	3	2	1	1	0	0	0	2	2	3	2	3	1	3
CO 5	3	2	2	2	2	1	1	0	1	0	0	2	3	2	2	3	3
Avg	3	2.2	1.8	2.6	2	1	0. 8	0	0. 2	0	1.3	2.2	3	2.2	2.6	2.2	2.6

ME4205	Title: Computational Fluid Dynamics	LTPC
		3 0 0 3
Version No.	1.0	
Course Prerequisites	Nil	
Objectives	To develop an understanding for the major theories, approaches and me	ethodologies used in
	CFD.	
Unit No.	Unit Title	No. of hours
		(per Unit)
Unit I	Introduction	7
Introduction: Computational	Fluid Dynamics as a Research and Design Tool, Applications of C	computational Fluid
Dynamics. Governing Equat	ions of Fluid Dynamics: Introduction, Control Volume, Substantial Der	ivative, Divergence
of Velocity, Continuity Equa	tion, Momentum Equation and Energy Equation	7
Unit II	Partial Differential Equations	/
Derobalia Equations, Elliptic	Di Quasi-Linear Partial Differential Equations, Eigen Value Method, Hy	perbolic Equations,
Parabolic Equations, Emplic	Discretization	Q
Introduction of Finite Differe	Discretization mees Difference Equations Explicit and Implicit Approaches Errors and	o I Stability Analysis
Grid Generation Uniform an	d non-uniform Grids Numerical Errors Grid Independence Test	a Stability Analysis,
Unit IV	Finite Volume Method	7
Introduction, Implicit Crank	-Nicholson Technique. Pressure Correction Method. SIMPLE and SI	MPLER algorithms.
Computation of Boundary La	ayer Flow	
Unit V	Turbulence and its modeling	7
Description of turbulent flo	w, free turbulent flows, flat plate boundary layer and pipe flow. Algo	ebraic Models, One
equation model		
Text Books	1.J D Anderson Jr., Computational Fluid Dynamics: The Basics V	With Applications
	McGraw Hill, Inc.	
	2. S.P. Patankar, Numerical Heat Transfer and Fluid flow, CRC Press	
Reference Books	1. K Murlidhar and T Sundara Rajan, Computational fluid flow and hea	it transfer, Narosa
	Publishing House.	1 1 1 1
	2. D.A. Anderson, J.I. Tannenill and R.H. Pletcher, Computational Flui Uset Transfer, Hamisphere Publishing Corneration	d Mechanics and
	2 T K Bose Numerical Fluid Dynamics Norosa Publishing House	
	4 C A L Eletcher Computational Techniques for Eluid Dynamics 1 Sr	ringer
	5 C A I Fletcher Computational Techniques for fluid Dynamics 2 Sn	ringer
Mode of Evaluation	Internal and External Examinations	
Recommendation by	24.03.2018	
Board of Studies on		
Date of approval by the	11.06.2018	
Academic Council		

Unit-wise Course Outcome	Descriptions	BL Level	Employability (Em)/ Skill(S)/ Entrepreneurship (En)/ None (Use , for more than One)
CO1	Students should be able to develop an understanding for the major theories, approaches and methodologies used in CFD.	3	S,Em
CO2	Students should be able to analyse the partial differential equation	4	S,
CO3	Students should be able to analyse discrete structures.	4	S
CO4	Students should be able to numerically solve the governing equations for fluid flow problems	4	S
CO5	Students should be able to analyse fluid flow and also able to do its modeling.	3	S

<u>CO-PO Mapping for ME4205</u>

Cours	I	Program Outcomes (Course Articulation Matrix (Highly												Program Program			
e		Mapped- 3, Moderate- 2, Low-1, Not related-0)										-0)	Spec	ific	Edu	cational	
Outco													Outco	mes	Ou	tcomes	
mes	PO	PO	PO	PO	PO	PO	PO	PO	PO	Р	Р	РО	PSO	PSO	PE	PE	PE
	1	2	3	4	5	6	7	8	9	Ο	Ο	12	1	2	0	O 2	O 3
										10	11				1		
CO 1	3	3	2	2	2	1	1	0	0	0	2	3	3	1	3	2	2
CO 2	3	3	2	3	2	1	0	0	1	0	0	2	3	2	2	2	3
CO 3	3	3	1	3	2	1	1	0	0	0	2	2	3	3	3	2	2
CO 4	3	2	2	3	2	1	1	0	0	0	2	2	3	2	3	1	3
CO 5	3	2	2	2	2	1	1	0	1	0	0	2	3	2	2	3	3
Avg	3	2.2	1.8	2.6	2	1	0. 8	0	0. 2	0	1.3	2.2	3	2.2	2.6	2.2	2.6

ME4210	Title: Design of Heat Exchangers	LTPC
		3003
Version No.	1.0	
Course Prerequisites	Nil	
Objectives	To learn the thermal and stress analysis on various parts of the heat excl	nangers and to
	analyze the sizing and rating of the heat exchangers for various applicat	ions
Unit No.	Unit Title	No. of hours
		(per Unit)
Unit I	Fundamentals of Heat Exchanger	7
Temperature distribution an	d its implications types, shell and tube heat exchangers, regenerators	s and recuperators,
analysis of heat exchangers,	LMTD and effectiveness method.	
Unit II	Flow And Stress Analysis	8
Effect of turbulence, friction	a factor, pressure loss, stress in tubes, header sheets and pressure vessel	s, thermal stresses,
shear stresses, types of failur	es.	
Unit III	Design Aspects	8
Comparison of air standard	and fuel air cycles, effect of operating variables, comparison of air s	standard and actual
cycles, effect of time loss, he	at loss and exhaust loss in Petrol and Diesel engines, valve and port timir	ng diagrams
Unit IV	Compact And Plate Heat Exchangers	7
Types, merits and demerits	s, design of compact heat exchangers, plate heat exchangers, perfor	mance influencing
parameters, limitations.		
Unit V	Condensers And Cooling Towers	6
Design of surface and evapor	rative condensers, cooling tower, performance characteristics.	
Text Books	1. Sadik Kakac and Hongtan Liu, Heat Exchangers Selection, Rating an	d Thermal Design,
	CRC Press	
	2. Arthur P Frass, Heat Exchanger Design, John Wiley and Sons	
Reference Books	1. Taborek.T, Hewitt.G.F and Afgan.N, Heat Exchangers-Theory and P	ractice, McGraw-
	Hill Book Co.	-
	2. G.F. Hewitt, G.L. Shires and T.R. Bott, Process Heat Transfer, CRC	Press
Mode of Evaluation	Internal and External Examinations	
Recommendation by	24.03.2018	
Board of Studies on		
Date of approval by the	11.06.2018	
Academic Council		

Unit-wise Course Outcome	Descriptions	BL Level	Employability (Em)/ Skill(S)/ Entrepreneurship (En)/ None (Use , for more than One)
C01	Students should able to develop good understanding of the intricacies of heat exchanger design.	2	S,Em
CO2	Students should learn about the flow and stresses in heat exchanger	2	None
CO3	Students should aware about different design aspacts of heat exchangers	2	Em
CO4	Students should gain knowledge of different heat exchanger in thermal power plant.	2	Em
CO5	Students should able to know the designing of condenser using the knowledge of heat exchanger.	2	S

Course	P	Program Outcomes (Course Articulation Matrix (Highly Mapped-											Prog	ram	Program		
Outco		3, Moderate- 2, Low-1, Not related-0)											Spec	ific	Educational		
mes										-		-	Outcomes		Outcomes		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PEO	PE	PE
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	1	O 2	O 3
CO 1	2	1	2	2	3	0	0	0	0	0	0	3	2	0	0	2	3
CO 2	2	2	2	2	0	0	0	0	0	0	0	2	3	1	0	2	3
CO 3	1	2	3	2	0	2	0	0	0	0	2	3	3	3	0	2	2
CO 4	2	2	3	3	2	1	0	1	0	1	2	3	2	2	1	1	3
CO 5	2	2	3	3	2	1	0	1	0	2	0	2	3	2	2	3	3
Avg	1.8	1.8	2.6	2.3	1.6	0.8	0	.3	0	.6	0.3	2.6	2.6	1.6	0.6	2	2.6

ME4207	Title: Jet & Rocket Propulsion Systems	
X7 • X 7	4.4	5005
Version No.		
Course Prerequisites		1 1 4 1
Objectives	10 develop an understanding of how air-breathing engines and chemica thrust.	ll rockets produce
Unit No.	Unit Title	No. of hours (per Unit)
Unit I	Turbo Jet Propulsion System	6
Turbo Jet Propulsion System	: Gas turbine cycle analysis, layout of turbo jet engine. Turbo machiner	y- compressors and
turbines, Combustor, blade a	erodynamics, engine off design performance analysis.	5 1
Flight Performance: Forces a	acting on vehicle, Basic relations of motion, multi stage vehicles.	
Unit II	Principles	8
Principles of Jet Propulsion	and Rocketry: Fundamentals of jet propulsion, Rockets and air bre	eathing jet engines,
Classification, turbo jet, tur	bo fan, turbo prop, rocket (Solid and Liquid propellant rockets) and Ram	jet engines.
Nozzle Theory and Characte	ristics Parameters: Theory of one dimensional convergent, divergent no	zzles, aerodynamic
choking of nozzles and mas	ss flow through a nozzle, nozzle exhaust velocity, thrust, thrust coef	ficient, Supersonic
nozzle shape, non-adapted i	nozzles, summer field criteria, departure from simple analysis ,charact	eristic parameters,
relationship between the char	racteristic parameters	
Unit III	Solid Propulsion System	8
Review of properties of mix	ture of gases, Gibbs, Dalton laws, Equivalent ratio, enthalpy changes	in reactions, heat of
reaction and heat of formation	ท	
Solid Propulsion System: S	olid propellants, classification, homogeneous and heterogeneous prope	ellants, double base
propellant compositions and	d manufacturing methods. Composite propellant oxidizers and binders	. Burning rate and
burning rate laws, factors in	ifluencing the burning rate, methods of determining burning rates. Soli	d propellant rocket
engine, Heat transfer consider	erations in solid rocket motor design. Ignition system, simple pyro device	S.
Unit IV	Liquid Rocket Propulsion System	7
Liquid propellants, classific	ation, Mono and Bi propellants, Cryogenic and storage propellants. Liqu	id propellant rocket
engine, system layout, pum	p and pressure feed systems, feed system components. Design of co	mbustion chamber,
characteristic length, constru	uctional features, and chamber wall stresses. Heat transfer and cooling	aspects. Uncooled
engines, injectors, various ty	ypes, injection patterns, injector characteristics, and atomization and dro	op size distribution,
propellant tank design.		
Unit V	Ramjet Propulsion System	7
Fuel rich solid propellants, g	gross thrust, gross thrust coefficient, combustion efficiency of ramjet eng	gine, air intakes and
their classification, critical,	super critical and sub-critical operation of air intakes, engine intake mate	ching, classification
and comparison of IIRR prop	pulsion systems.	
Text Books	1. M.L. Mathur, Gas Turbine and Jet Rocket Propulsion, ST and ARD I	Publishers
	2. H.I.H. Saravana Muttoo, G.F.C. Rogers, H. Cohen, Gas Turbine The	ory, Pearson
	Publication	
Reference Books	1. Ganesan, Gas Turbines, TMH	
	2. Khajuria and Dubey, Gas Turbines and Propulsive Systems, Dhanpat	rai
Mode of Evaluation	Internal and External Examinations	
Recommendation by	06.06.2019	
Board of Studies on		
Date of approval by the	13.07.2019	
Academic Council		

Unit-wise Course Outcome	Descriptions	BL Level	Employability (Em)/ Skill(S)/ Entrepreneurship (En)/ None (Use , for more than One)
CO1	Students should be able to understand working of various propulsion systems.	2	S,Em
CO2	Students should be able to understand the principles of jet propulsion and rocketry.	2	S
CO3	Students should be able to review the properties of mixture of gases and understand the solid propulsion system.	3	S
CO4	Students should be able to understand the liquid rocket propulsion system.	2	None
CO5	Students should be able to understand the ramjet propulsion system	2	none

Cours]	Program Outcomes (Course Articulation Matrix (Highly										Prog	ram	Program			
e		Mapped- 3, Moderate- 2, Low-1, Not related-0)									d-0)	Specific		Educational			
Outco													Outcomes		Ou		
mes	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	PO	PSO	PSO	PE	PE	PE
	0	0	0	0	0	0	0	0	0	0	Ο	12	1	2	0	O 2	O 3
	1	2	3	4	5	6	7	8	9	10	11				1		
CO 1	3	2	2	1	3	0	3	0	2	2	2	3	3	0	3	2	2
CO 2	3	2	1	1	`1	0	0	0	1	2	0	2	3	1	2	2	3
CO 3	2	3	2	1	2	0	2	0	1	0	2	2	3	3	2	2	2
CO 4	3	2	3	3	2	0	1	0	1	1	2	2	3	2	2	1	3
CO 5	3	2	3	3	2	0	2	0	2	2	0	2	3	2	2	3	3
Avg	2. 8	2.2	2.2	1.8	2	0	1. 8	0	1. 6	1.4	1.3	2.2	3	2.2	2.2	2	2.6

Version No. 1.0 Course Prerequisites Nil Objectives The course is intended to impart knowledge on theory and practice of gas turbines and compressors Unit No. Unit Title No. of hours (per Unit) Unit I Introduction 6 Gas turbines -Open and closed cycles -Requirements of working medium -Applications. Ideal cycles and their analysis - Simple cycle and its modifications with reheat, regeneration and inter cooling -Ericsson cycle. 8 Real cycles -Compressor and turbine efficiencies -Heat exchanger effectiveness -Flow losses - Incomplete combustion - Cycle efficiency -Performance prediction of simple gas turbines -Off Design operations -Methods of improving part load operations -Transient behavior Performance deterioration. 8 Unit III Axial Flow Gas Turbines 8 Work done. Velocity triangle and efficiencies, Thermodynamic flow analysis, Degree of reaction, Design cascade analysis, Blade assembling, Material and cooling of blades, Performances. 7 Unit IV Centrifugal Compressor 7 Types, Velocity triangles and efficiencies, Blade passage design, Diffuser and pressure recovery. Slip factor, Stanitz and Stodolas formula's, Effect of inlet mach numbers, Pre whirl, Performance. 7 Unit IV Axial Flow Compressors 7 Flow Analysis, Work and velocity triangles, Efficiencies, Thermodynamic analysis. Stage pressure rise, Degree of reaction, Stage Loading	ME4208	Title: Gas Turbine and Compressors	L T P C
Version No. 1.0 Course Prerequisites Nil Objectives The course is intended to impart knowledge on theory and practice of gas turbines and compressors Unit No. Unit Title No. of hours (per Unit) Unit I Introduction 6 Gas turbines -Open and closed cycles -Requirements of working medium -Applications. Ideal cycles and their analysis - Simple cycle and its modifications with reheat, regeneration and inter cooling -Ericsson cycle. 8 Whit II Design Cycles 8 Real cycles -Compressor and turbine efficiencies -Heat exchanger effectiveness -Flow losses - Incomplete combustion - Cycle efficiency -Performance prediction of simple gas turbines -OfP Design operations -Methods of improving part load operations -Transient behavior Performance deterioration. 8 Work done. Velocity triangle and efficiencies, Thermodynamic flow analysis, Degree of reaction, Design cascade analysis, Blade assembling, Material and cooling of blades, Performances, Matching of compressors and turbines, off design Performance. 7 Unit IV Centrifugal Compressor 7 Types, Velocity triangles and efficiencies, Blade passage design, Diffuser and pressure recovery. Slip factor, Stanitz and Stodolas formula's, Effect of inlet mach numbers, Pre whirl, Performance. 7 Unit V Axial Flow Compressors 7 Flow Analysis, Work and velocity triangles, Efficiencies, Thermodynamic analysis. Stag			3003
Course Prerequisites Nil Objectives The course is intended to impart knowledge on theory and practice of gas turbines and compressors Unit No. Unit Title No. of hours (per Unit) Unit I Introduction 6 Gas turbines -Open and closed cycles -Requirements of working medium -Applications. Ideal cycles and their analysis - Simple cycle and its modifications with reheat, regeneration and inter cooling -Ericsson cycle. 8 Unit II Design Cycles 8 Real cycles -Compressor and turbine efficiencies -Heat exchanger effectiveness -Flow losses - Incomplete combustion - Cycle efficiency -Performance prediction of simple gas turbines -Off Design operations -Methods of improving part load operations -Transient behavior Performance deterioration. 8 Unit III Axial Flow Gas Turbines 8 Work done. Velocity triangle and efficiencies, Thermodynamic flow analysis, Degree of reaction, Design cascade analysis, Blade assembling, Material and cooling of blades, Performances, Matching of compressors and turbines, off design Performance. 7 Unit IV Centrifugal Compressor 7 Types, Velocity triangles and efficiencies, Blade passage design, Diffuser and pressure recovery. Slip factor, Stanitz and Stodolas formula's, Effect of inlet mach numbers, Pre whirl, Performance. 7 Unit V Axial Flow Compressors 7	Version No.	1.0	
Objectives The course is intended to impart knowledge on theory and practice of gas turbines and compressors Unit No. Unit Title No. of hours (per Unit) Unit I Introduction 6 Gas turbines -Open and closed cycles -Requirements of working medium -Applications. Ideal cycles and their analysis - Simple cycle and its modifications with reheat, regeneration and inter cooling -Ericsson cycle. 8 Unit II Design Cycles 8 Real cycles -Compressor and turbine efficiencies -Heat exchanger effectiveness -Flow losses - Incomplete combustion - Cycle efficiency -Performance prediction of simple gas turbines -Off Design operations -Methods of improving part load operations -Transient behavior Performance deterioration. 8 Work done. Velocity triangle and efficiencies, Thermodynamic flow analysis, Degree of reaction, Design cascade analysis, Blade assembling, Material and cooling of blades, Performances, Matching of compressors and turbines, off design Performance. 7 Unit IV Centrifugal Compressor 7 Types, Velocity triangles and efficiencies, Blade passage design, Diffuser and pressure recovery. Slip factor, Stanitz and Stodolas formula's, Effect of inlet mach numbers, Pre whirl, Performance. 7 Thew Analysis, Work and velocity triangles, Efficiencies, Thermodynamic analysis. Stage pressure rise, Degree of reaction, Stage Loading, General design, Effect of velocity, Incidence, Performance. Cascade Analysis: Geometrical and terminology. Blade force, Efficiencies, Losses, Free end force, Vortex Blades.	Course Prerequisites	Nil	
compressorsUnit No.Unit TitleNo. of hours (per Unit)Unit IIntroduction6Gas turbines -Open and closed cycles -Requirements of working medium -Applications. Ideal cycles and their analysis - Simple cycle and its modifications with reheat, regeneration and inter cooling -Ericsson cycle.8Real cycles -Compressor and turbine efficiencies -Heat exchanger effectiveness -Flow losses - Incomplete combustion - Cycle efficiency -Performance prediction of simple gas turbines -Off Design operations -Methods of improving part load operations -Transient behavior Performance deterioration.8Work done. Velocity triangle and efficiencies, Thermodynamic flow analysis, Degree of reaction, Design cascade analysis, Blade assembling, Material and cooling of blades, Performance, Matching of compressors and turbines, off design Performance.8Unit IVCentrifugal Compressor7Types, Velocity triangles and efficiencies, Blade passage design, Diffuser and pressure recovery. Slip factor, Stanitz and Stodolas formula's, Effect of inlet mach numbers, Pre whirl, Performance.7Unit VAxial Flow Compressors7Flow Analysis, Work and velocity triangles, Efficiencies, Thermodynamic analysis. Stage pressure rise, Degree of reaction, Stage Loading, General design, Efficiencies, Thermodynamic analysis. Stage pressure rise, Degree of reaction, Stage Loading, General design, Efficiencies, Thermodynamic analysis. Stage pressure rise, Degree of reaction, Stage Loading, General design, Efficiencies, Thermodynamic analysis. Stage pressure rise, Degree of reaction, Stage Loading, General design, Efficiencies, Thermodynamic analysis. Stage pressure rise, Degree of reaction, Stage Loading, General design, Efficiencies, Thermodynamic analysis	Objectives	The course is intended to impart knowledge on theory and practice of g	as turbines and
Unit No. Unit Title No. of hours (per Unit) Unit I Introduction 6 Gas turbines -Open and closed cycles -Requirements of working medium -Applications. Ideal cycles and their analysis - Simple cycle and its modifications with reheat, regeneration and inter cooling -Ericsson cycle. 8 Unit II Design Cycles 8 Real cycles -Compressor and turbine efficiencies -Heat exchanger effectiveness -Flow losses - Incomplete combustion - Cycle efficiency -Performance prediction of simple gas turbines -Off Design operations -Methods of improving part load operations -Transient behavior Performance deterioration. 8 Unit III Axial Flow Gas Turbines 8 Work done. Velocity triangle and efficiencies, Thermodynamic flow analysis, Degree of reaction, Design cascade analysis, Blade assembling, Material and cooling of blades, Performances, Matching of compressors and turbines, off design Performance. 7 Unit IV Centrifugal Compressor 7 Types, Velocity triangles and efficiencies, Blade passage design, Diffuser and pressure recovery. Slip factor, Stanitz and Stodolas formula's, Effect of inlet mach numbers, Pre whirl, Performance. 7 Unit V Axial Flow Compressors 7 Flow Analysis, Work and velocity triangles, Efficiencies, Thermodynamic analysis. Stage pressure rise, Degree of reaction, Stage Loading, General design, Effect of velocity, Incidence, Performance. Cascade Analysis: Geometrical and terminology. Blade force, Efficiencies, Losses, Free		compressors	
Unit IIntroduction6Gas turbines -Open and closed cycles -Requirements of working medium -Applications. Ideal cycles and their analysis - Simple cycle and its modifications with reheat, regeneration and inter cooling -Ericsson cycle.8Unit IIDesign Cycles8Real cycles -Compressor and turbine efficiencies -Heat exchanger effectiveness -Flow losses - Incomplete combustion - Cycle efficiency -Performance prediction of simple gas turbines -Off Design operations -Methods of improving part load operations -Transient behavior Performance deterioration.8Unit IIIAxial Flow Gas Turbines8Work done. Velocity triangle and efficiencies, Thermodynamic flow analysis, Degree of reaction, Design cascade analysis, Blade assembling, Material and cooling of blades, Performances, Matching of compressors and turbines, off design Performance.7Unit IVCentrifugal Compressor7Types, Velocity triangles and efficiencies, Blade passage design, Diffuser and pressure recovery. Slip factor, Stanitz and Stodolas formula's, Effect of inlet mach numbers, Pre whirl, Performance.7Unit VAxial Flow Compressors7Flow Analysis, Work and velocity triangles, Efficiencies, Thermodynamic analysis. Stage pressure rise, Degree of reaction, Stage Loading, General design, Efficiencies, Thermodynamic analysis.Seemetrical and terminology. Blade force, Efficiencies, Losses, Free end force, Vortex Blades.Text Books1. Yahya, Elements of Gas Dynamics, New Age Publication 2. V Ganesan, Gas Turbines, Tata McGraw-Hill Pub.Reference Books1. D.G. Shepherd, Principles of Turbo Machinery, The Macmillan Company 2. Dixon, Fluid Mechanics, Thermodynamics of Turbo Machinery, Pergamo	Unit No.	Unit Title	No. of hours (per Unit)
Gas turbines -Open and closed cycles -Requirements of working medium -Applications. Ideal cycles and their analysis - Simple cycle and its modifications with reheat, regeneration and inter cooling -Ericsson cycle. Unit II Design Cycles 8 Real cycles -Compressor and turbine efficiencies -Heat exchanger effectiveness -Flow losses - Incomplete combustion - Cycle efficiency -Performance prediction of simple gas turbines -Off Design operations -Methods of improving part load operations -Transient behavior Performance deterioration. Unit III Axial Flow Gas Turbines 8 Work done. Velocity triangle and efficiencies, Thermodynamic flow analysis, Degree of reaction, Design cascade analysis, Blade assembling, Material and cooling of blades, Performances, Matching of compressors and turbines, off design Performance. 8 Unit IV Centrifugal Compressor 7 Types, Velocity triangles and efficiencies, Blade passage design, Diffuser and pressure recovery. Slip factor, Stanitz and Stodlas formula's, Effect of inlet mach numbers, Pre whirl, Performance. 7 Unit V Axial Flow Compressors 7 Flow Analysis, Work and velocity triangles, Effect of velocity, Incidence, Performance. Cascade Analysis: Geometrical and terminology. Blade force, Efficiencies, Losses, Free end force, Vortex Blades. 7 Text Books 1. Yahya, Elements of Gas Dynamics, New Age Publication 2. V Ganesan, Gas Turbines, Tata McGraw-Hill Pub. 1. O.G. Shepherd, Principles of Turbo Machinery, Pergamon Press </td <td>Unit I</td> <td>Introduction</td> <td>6</td>	Unit I	Introduction	6
Simple cycle and its modifications with reheat, regeneration and inter cooling -Ericsson cycle. 8 Unit II Design Cycles 8 Real cycles -Compressor and turbine efficiencies -Heat exchanger effectiveness -Flow losses - Incomplete combustion - Cycle efficiency -Performance prediction of simple gas turbines -Off Design operations -Methods of improving part load operations -Transient behavior Performance deterioration. 8 Unit III Axial Flow Gas Turbines 8 Work done. Velocity triangle and efficiencies, Thermodynamic flow analysis, Degree of reaction, Design cascade analysis, Blade assembling, Material and cooling of blades, Performances, Matching of compressors and turbines, off design Performance. 7 Unit IV Centrifugal Compressor 7 Types, Velocity triangles and efficiencies, Blade passage design, Diffuser and pressure recovery. Slip factor, Stanitz and Stodolas formula's, Effect of inlet mach numbers, Pre whirl, Performance. 7 Unit V Axial Flow Compressors 7 Flow Analysis, Work and velocity triangles, Efficiencies, Thermodynamic analysis. Stage pressure rise, Degree of reaction, Stage Loading, General design, Effect of velocity, Incidence, Performance. Cascade Analysis: Geometrical and terminology. Blade force, Efficiencies, Losses, Free end force, Vortex Blades. 7 Text Books 1. Yahya, Elements of Gas Dynamics, New Age Publication 2. V Ganesan, Gas Turbines, Tata McGraw-Hill Pub. 8 Reference Books 1. O.G. Shepherd, Pr	Gas turbines -Open and clos	ed cycles -Requirements of working medium -Applications. Ideal cycles	and their analysis -
Unit II Design Cycles 8 Real cycles -Compressor and turbine efficiencies -Heat exchanger effectiveness -Flow losses - Incomplete combustion - Cycle efficiency -Performance prediction of simple gas turbines -Off Design operations -Methods of improving part load operations -Transient behavior Performance deterioration. 8 Unit III Axial Flow Gas Turbines 8 Work done. Velocity triangle and efficiencies, Thermodynamic flow analysis, Degree of reaction, Design cascade analysis, Blade assembling, Material and cooling of blades, Performances, Matching of compressors and turbines, off design Performance. 7 Unit IV Centrifugal Compressor 7 Types, Velocity triangles and efficiencies, Blade passage design, Diffuser and pressure recovery. Slip factor, Stanitz and Stodolas formula's, Effect of inlet mach numbers, Pre whirl, Performance. 7 Unit V Axial Flow Compressors 7 Flow Analysis, Work and velocity triangles, Efficiencies, Thermodynamic analysis. Stage pressure rise, Degree of reaction, Stage Loading, General design, Effect of velocity, Incidence, Performance. Cascade Analysis: Geometrical and terminology. Blade force, Efficiencies, Losses, Free end force, Vortex Blades. 1. Yahya, Elements of Gas Dynamics, New Age Publication 2. V Ganesan, Gas Turbines, Tata McGraw-Hill Pub. Reference Books 1. D.G. Shepherd, Principles of Turbo Machinery, The Macmillan Company 2. Dixon, Fluid Mechanics, Thermodynamics of Turbo Machinery, Pergamon Press Mode of Evaluation Internal and External Examinat	Simple cycle and its modific	ations with reheat, regeneration and inter cooling -Ericsson cycle.	2
Real cycles -Compressor and turbine efficiencies -Heat exchanger effectiveness -Flow losses - Incomplete combustion - Cycle efficiency -Performance prediction of simple gas turbines -Off Design operations -Methods of improving part load operations -Transient behavior Performance deterioration. Unit III Axial Flow Gas Turbines 8 Work done. Velocity triangle and efficiencies, Thermodynamic flow analysis, Degree of reaction, Design cascade analysis, Blade assembling, Material and cooling of blades, Performances, Matching of compressors and turbines, off design Performance. 7 Unit IV Centrifugal Compressor 7 Types, Velocity triangles and efficiencies, Blade passage design, Diffuser and pressure recovery. Slip factor, Stanitz and Stodolas formula's, Effect of inlet mach numbers, Pre whirl, Performance. 7 Unit V Axial Flow Compressors 7 Flow Analysis, Work and velocity triangles, Efficiencies, Thermodynamic analysis. Stage pressure rise, Degree of reaction, Stage Loading, General design, Effect of velocity, Incidence, Performance. Cascade Analysis: Geometrical and terminology. Blade force, Efficiencies, Losses, Free end force, Vortex Blades. 1. Yahya, Elements of Gas Dynamics, New Age Publication 2. V Ganesan, Gas Turbines, Tata McGraw-Hill Pub. Reference Books 1. D.G. Shepherd, Principles of Turbo Machinery, The Macmillan Company 2. Dixon, Fluid Mechanics, Thermodynamics of Turbo Machinery, Pergamon Press Mode of Evaluation Internal and External Examinations 24.03.2018	Unit II	Design Cycles	8
Unit IIIAxial Flow Gas Turbines8Work done. Velocity triangle and efficiencies, Thermodynamic flow analysis, Degree of reaction, Design cascade analysis, Blade assembling, Material and cooling of blades, Performances, Matching of compressors and turbines, off design Performance.9Unit IVCentrifugal Compressor7Types, Velocity triangles and efficiencies, Blade passage design, Diffuser and pressure recovery. Slip factor, Stanitz and Stodolas formula's, Effect of inlet mach numbers, Pre whirl, Performance.7Unit VAxial Flow Compressors7Flow Analysis, Work and velocity triangles, Efficiencies, Thermodynamic analysis. Stage pressure rise, Degree of reaction, Stage Loading, General design, Effect of velocity, Incidence, Performance. Cascade Analysis: Geometrical and terminology. Blade force, Efficiencies, Losses, Free end force, Vortex Blades.7Text Books1. Yahya, Elements of Gas Dynamics, New Age Publication 2. V Ganesan, Gas Turbines, Tata McGraw-Hill Pub.2. V Ganesan, Gas Turbines, Thermodynamics of Turbo Machinery, Pergamon PressMode of EvaluationInternal and External Examinations1Recommendation by Recommendation by24.03.2018	Real cycles -Compressor and Cycle efficiency -Performant operations -Transient behavior	d turbine efficiencies -Heat exchanger effectiveness -Flow losses - Incon ce prediction of simple gas turbines -Off Design operations -Methods of or Performance deterioration.	nplete combustion - improving part load
Work done. Velocity triangle and efficiencies, Thermodynamic flow analysis, Degree of reaction, Design cascade analysis, Blade assembling, Material and cooling of blades, Performances, Matching of compressors and turbines, off design Performance. Unit IV Centrifugal Compressor 7 Types, Velocity triangles and efficiencies, Blade passage design, Diffuser and pressure recovery. Slip factor, Stanitz and Stodolas formula's, Effect of inlet mach numbers, Pre whirl, Performance. 7 Unit V Axial Flow Compressors 7 Flow Analysis, Work and velocity triangles, Efficiencies, Thermodynamic analysis. Stage pressure rise, Degree of reaction, Stage Loading, General design, Effect of velocity, Incidence, Performance. Cascade Analysis: Geometrical and terminology. Blade force, Efficiencies, Losses, Free end force, Vortex Blades. 7 Text Books 1. Yahya, Elements of Gas Dynamics, New Age Publication 2. V Ganesan, Gas Turbines, Tata McGraw-Hill Pub. 2. Viscon, Fluid Mechanics, Thermodynamics of Turbo Machinery, Pergamon Press Mode of Evaluation Internal and External Examinations 24.03.2018	Unit III	Axial Flow Gas Turbines	8
analysis, Blade assembling, Material and cooling of blades, Performances, Matching of compressors and turbines, off design Performance. Unit IV Centrifugal Compressor 7 Types, Velocity triangles and efficiencies, Blade passage design, Diffuser and pressure recovery. Slip factor, Stanitz and Stodolas formula's, Effect of inlet mach numbers, Pre whirl, Performance. 7 Unit V Axial Flow Compressors 7 Flow Analysis, Work and velocity triangles, Efficiencies, Thermodynamic analysis. Stage pressure rise, Degree of reaction, Stage Loading, General design, Effect of velocity, Incidence, Performance. Cascade Analysis: Geometrical and terminology. Blade force, Efficiencies, Losses, Free end force, Vortex Blades. 7 Text Books 1. Yahya, Elements of Gas Dynamics, New Age Publication 2. V Ganesan, Gas Turbines, Tata McGraw-Hill Pub. Reference Books 1. D.G. Shepherd, Principles of Turbo Machinery, The Macmillan Company 2. Dixon, Fluid Mechanics, Thermodynamics of Turbo Machinery, Pergamon Press Mode of Evaluation Internal and External Examinations 24.03.2018	Work done. Velocity triangle	e and efficiencies. Thermodynamic flow analysis. Degree of reaction. Des	sign cascade
design Performance. 7 Unit IV Centrifugal Compressor 7 Types, Velocity triangles and efficiencies, Blade passage design, Diffuser and pressure recovery. Slip factor, Stanitz and Stodolas formula's, Effect of inlet mach numbers, Pre whirl, Performance. 7 Unit V Axial Flow Compressors 7 Flow Analysis, Work and velocity triangles, Efficiencies, Thermodynamic analysis. Stage pressure rise, Degree of reaction, Stage Loading, General design, Effect of velocity, Incidence, Performance. Cascade Analysis: Geometrical and terminology. Blade force, Efficiencies, Losses, Free end force, Vortex Blades. 1. Yahya, Elements of Gas Dynamics, New Age Publication 2. V Ganesan, Gas Turbines, Tata McGraw-Hill Pub. Reference Books 1. D.G. Shepherd, Principles of Turbo Machinery, The Macmillan Company 2. Dixon, Fluid Mechanics, Thermodynamics of Turbo Machinery, Pergamon Press Mode of Evaluation 24.03.2018	analysis, Blade assembling, I	Material and cooling of blades, Performances, Matching of compressors a	and turbines, off
Unit IVCentrifugal Compressor7Types, Velocity triangles and efficiencies, Blade passage design, Diffuser and pressure recovery. Slip factor, Stanitz and Stodolas formula's, Effect of inlet mach numbers, Pre whirl, Performance.7Unit VAxial Flow Compressors7Flow Analysis, Work and velocity triangles, Efficiencies, Thermodynamic analysis. Stage pressure rise, Degree of reaction, Stage Loading, General design, Effect of velocity, Incidence, Performance. Cascade Analysis: Geometrical and terminology. Blade force, Efficiencies, Losses, Free end force, Vortex Blades.7Text Books1. Yahya, Elements of Gas Dynamics, New Age Publication 2. V Ganesan, Gas Turbines, Tata McGraw-Hill Pub.Reference Books1. D.G. Shepherd, Principles of Turbo Machinery, The Macmillan Company 2. Dixon, Fluid Mechanics, Thermodynamics of Turbo Machinery, Pergamon PressMode of Evaluation24.03.2018	design Performance.		
Types, Velocity triangles and efficiencies, Blade passage design, Diffuser and pressure recovery. Slip factor, Stanitz and Stodolas formula's, Effect of inlet mach numbers, Pre whirl, Performance. Unit V Axial Flow Compressors 7 Flow Analysis, Work and velocity triangles, Efficiencies, Thermodynamic analysis. Stage pressure rise, Degree of reaction, Stage Loading, General design, Effect of velocity, Incidence, Performance. Cascade Analysis: Geometrical and terminology. Blade force, Efficiencies, Losses, Free end force, Vortex Blades. Text Books 1. Yahya, Elements of Gas Dynamics, New Age Publication 2. V Ganesan, Gas Turbines, Tata McGraw-Hill Pub. Reference Books 1. D.G. Shepherd, Principles of Turbo Machinery, The Macmillan Company 2. Dixon, Fluid Mechanics, Thermodynamics of Turbo Machinery, Pergamon Press Mode of Evaluation 24.03.2018	Unit IV	Centrifugal Compressor	7
Stodolas formula's, Effect of inlet mach numbers, Pre whirl, Performance. 7 Unit V Axial Flow Compressors 7 Flow Analysis, Work and velocity triangles, Efficiencies, Thermodynamic analysis. Stage pressure rise, Degree of reaction, Stage Loading, General design, Effect of velocity, Incidence, Performance. Cascade Analysis: Geometrical and terminology. Blade force, Efficiencies, Losses, Free end force, Vortex Blades. 7 Text Books 1. Yahya, Elements of Gas Dynamics, New Age Publication 2. V Ganesan, Gas Turbines, Tata McGraw-Hill Pub. Reference Books 1. D.G. Shepherd, Principles of Turbo Machinery, The Macmillan Company 2. Dixon, Fluid Mechanics, Thermodynamics of Turbo Machinery, Pergamon Press Mode of Evaluation Internal and External Examinations 24.03.2018	Types, Velocity triangles and	d efficiencies, Blade passage design, Diffuser and pressure recovery. Slip	o factor, Stanitz and
Unit VAxial Flow Compressors7Flow Analysis, Work and velocity triangles, Efficiencies, Thermodynamic analysis. Stage pressure rise, Degree of reaction, Stage Loading, General design, Effect of velocity, Incidence, Performance. Cascade Analysis: Geometrical and terminology. Blade force, Efficiencies, Losses, Free end force, Vortex Blades.7Text Books1. Yahya, Elements of Gas Dynamics, New Age Publication 2. V Ganesan, Gas Turbines, Tata McGraw-Hill Pub.Reference Books1. D.G. Shepherd, Principles of Turbo Machinery, The Macmillan Company 2. Dixon, Fluid Mechanics, Thermodynamics of Turbo Machinery, Pergamon PressMode of EvaluationInternal and External ExaminationsRecommendation by Beard of Studies on24.03.2018	Stodolas formula's, Effect of	inlet mach numbers, Pre whirl, Performance.	
Flow Analysis, Work and velocity triangles, Efficiencies, Thermodynamic analysis. Stage pressure rise, Degree of reaction, Stage Loading, General design, Effect of velocity, Incidence, Performance. Cascade Analysis: Geometrical and terminology. Blade force, Efficiencies, Losses, Free end force, Vortex Blades. Text Books 1. Yahya, Elements of Gas Dynamics, New Age Publication 2. V Ganesan, Gas Turbines, Tata McGraw-Hill Pub. Reference Books 1. D.G. Shepherd, Principles of Turbo Machinery, The Macmillan Company 2. Dixon, Fluid Mechanics, Thermodynamics of Turbo Machinery, Pergamon Press Mode of Evaluation Internal and External Examinations Recommendation by 24.03.2018	Unit V	Axial Flow Compressors	7
reaction, Stage Loading, General design, Effect of velocity, Incidence, Performance. Cascade Analysis: Geometrical and terminology. Blade force, Efficiencies, Losses, Free end force, Vortex Blades.Text Books1. Yahya, Elements of Gas Dynamics, New Age Publication 2. V Ganesan, Gas Turbines, Tata McGraw-Hill Pub.Reference Books1. D.G. Shepherd, Principles of Turbo Machinery, The Macmillan Company 2. Dixon, Fluid Mechanics, Thermodynamics of Turbo Machinery, Pergamon PressMode of EvaluationInternal and External ExaminationsRecommendation by Beard of Studies on24.03.2018	Flow Analysis, Work and	velocity triangles, Efficiencies, Thermodynamic analysis. Stage press	ure rise, Degree of
terminology. Blade force, Efficiencies, Losses, Free end force, Vortex Blades. Text Books 1. Yahya, Elements of Gas Dynamics, New Age Publication 2. V Ganesan, Gas Turbines, Tata McGraw-Hill Pub. Reference Books 1. D.G. Shepherd, Principles of Turbo Machinery, The Macmillan Company 2. Dixon, Fluid Mechanics, Thermodynamics of Turbo Machinery, Pergamon Press Mode of Evaluation Internal and External Examinations Recommendation by 24.03.2018	reaction, Stage Loading, Ger	neral design, Effect of velocity, Incidence, Performance. Cascade Analys	is: Geometrical and
Text Books1. Yahya, Elements of Gas Dynamics, New Age Publication 2. V Ganesan, Gas Turbines, Tata McGraw-Hill Pub.Reference Books1. D.G. Shepherd, Principles of Turbo Machinery, The Macmillan Company 2. Dixon, Fluid Mechanics, Thermodynamics of Turbo Machinery, Pergamon PressMode of EvaluationInternal and External ExaminationsRecommendation by Board of Studies on24.03.2018	terminology. Blade force, Ef	ficiencies, Losses, Free end force, Vortex Blades.	
2. V Ganesan, Gas Turbines, Tata McGraw-Hill Pub. Reference Books 1. D.G. Shepherd, Principles of Turbo Machinery, The Macmillan Company 2. Dixon, Fluid Mechanics, Thermodynamics of Turbo Machinery, Pergamon Press Mode of Evaluation Internal and External Examinations Recommendation by Board of Studies on 24.03.2018	Text Books	1. Yahya, Elements of Gas Dynamics, New Age Publication	
Reference Books 1. D.G. Shepherd, Principles of Turbo Machinery, The Macmillan Company 2. Dixon, Fluid Mechanics, Thermodynamics of Turbo Machinery, Pergamon Press Mode of Evaluation Internal and External Examinations Recommendation by 24.03.2018		2. V Ganesan, Gas Turbines, Tata McGraw-Hill Pub.	
2. Dixon, Fluid Mechanics, Thermodynamics of Turbo Machinery, Pergamon Press Mode of Evaluation Internal and External Examinations Recommendation by 24.03.2018	Reference Books	1. D.G. Shepherd, Principles of Turbo Machinery, The Macmillan Com	pany
Mode of Evaluation Internal and External Examinations Recommendation by 24.03.2018 Board of Studies on 24.03.2018		2. Dixon, Fluid Mechanics, Thermodynamics of Turbo Machinery, Perg	gamon Press
Recommendation by 24.03.2018	Mode of Evaluation	Internal and External Examinations	
Recommendation by 24.03.2018		24.02.2019	
BOWER OF BUILDING OF	Recommendation by	24.03.2018	
Defended of Studies of 11.0C 2018	Board of Studies on	11.06.2019	
Academic Council	Academic Council	11.00.2018	

Unit-wise Course Outcome	Descriptions	BL Level	Employability (Em)/ Skill(S)/ Entrepreneurship (En)/ None (Use, for more than One)
CO1	Students should be able to develop Basic understanding of gas turbine and related working cycles	2	S,Em
CO2	Students should be able to understand designing concepts of gas turbines	3	S
CO3	Students should be able to understand velocity triangle and axial flow turbine	3	S
CO4	Students should be able to understand centrifugal compressor basics and their performance evaluation	3	S
CO5	Students should be able to understand the concept of degree of reaction for axial flow compressors.	2	S,Em

Course]	Program Outcomes (Course Articulation Matrix (Highly										Prog	gram	Program			
Outcomes		Mapped- 3, Moderate- 2, Low-1, Not related-										ed-	Spee	cific	Educational		
				0)								Outcomes Outcomes				
	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	PO	PSO	PSO	PE	PE	PE
	0	0	0	0	0	0	0	0	0	0	0	12	1	2	0	0	O 3
	1	2	3	4	5	6	7	8	9	10	11				1	2	
CO 1	2	1	1	1	1	0	1	0	0	1	1	2	2	1	2	1	1
CO 2	3	3	3	2	2	2	2	1	1	2	1	3	3	3	3	3	2
CO 3	3	3	2	2	2	0	2	0	0	0	2	2	3	3	1	2	2
CO 4	3	2	3	3	2	0	1	0	0	1	2	3	3	2	3	2	3
CO 5	3	3	2	2	2	2	2	1	1	2	1	2	3	3	2	2	2
Avg	2. 8	2.2	2.2	2	1.9	0.4	1. 8	0. 2	0. 2	1.2	1.8	2.2	2.8	2.2	2.2	2	2

ME4209	Title: Fire Dynamics Engineering	LTPC
		3003
Version No.	1.1	
Course Prerequisites	Nil	
Objectives	To understand initiation and propagation of a Fire along with technique	s of fire detection
	and suppression.	
Unit No.	Unit Title	No. of hours
		(per Unit)
Unit I	Combustion Fundamentals	6
Fuels - Types and Characteri	stics of Fuels, Fuels Analysis - Proximate and Ultimate Analysis - Moist	ure Determination -
Calorific Value, Gross and N	et Calorific Values - Calorimetry - DuLong's Formula for CV Estimation	1
Unit II	Combustion Stoichiometry	8
Stoichiometry- Mass Basis	and Volume Basis - Excess Air Calculation - Fuel and Flue G	as Compositions -
Calculations – Rapid Metho	ods - Combustion Processes - Stationary Flame - Surface or Flame	less Combustion –
Submerged Combustion – Pu	Isating and Slow Combustion Explosive Combustion.	
Unit III	Mechanism of Combustion	8
Mechanism of Combustion –	Ignition and Ignition Energy – Spontaneous Combustion – Flame Propa	gation – Solid,
Liquid and Gaseous Fuels Co	ombustion – Flame Temperature – Theoretical, Adiabatic and Actual – Ig	nition Limits –
Limits of Inflammability. Th	ermo Chemistry - Equilibrium combustion products. Low temperature co	mbustion products
 High temperature combusti 	on products	
Unit IV	Fire Dynamics	7
Flames and fire spread theory	y, buoyant plumes, interactions with surfaces, smoke spread, turbulent di	ffusion flames, soot
formation and radiation effec	ts, toxic products; feedback to fuel; fire chemistry, nitrogen and halogen	thermochemistry.
Unit V	Fire Detection and Suppression	7
Instruments and sensors, mo	onitoring systems, halogen and water mist suppression. Automatic spr	inkler systems and
prediction of actuating time.	Codes, standards and laws; case studies of real fires - buildings, factor	ories and godowns,
automobiles, buses, trains an	d aircraft, oil spills, forest fires, tents, slums, residential spaces.	
Text Books	1. D.D. Drysdale, An Introduction to Fire Dynamics, Wiley, New York	
Reference Books	1. J.W. Lyons, Fire, Scientific American Books	
	2. B. Karlsson, and J.G. Quintiere, Enclosure Fire Dynamics, CRC Pres	S
	3. G. Cox, Combustion Fundamentals of Fire, Academic Press, London	
Mode of Evaluation	Internal and External Examinations	
Recommendation by	06.06.2019	
Board of Studies on		
Date of approval by the	13.07.2019	
Academic Council		

Unit-wise Course Outcome	Descriptions	BL Level	Employability (Em)/ Skill(S)/ Entrepreneurship (En)/ None (Use , for more than One)
C01	Students should be able to basic knowledge of Combustion Fundamentals of Fire Dynamics Engineering.	2	Em
CO2	Students should be able to understand the Combustion Stoichiometry, Combustion Processes, Surface or Flameless Combustion.	2	None
CO3	Students should be able to basic knowledge of Mechanism of Combustion and Thermo Chemistry.	3	None
CO4	Students should be able to basic principle Fire Dynamics Flames and fire spread theory.	2	None
CO5	Students should be able to acquired knowledge on real life problems and importance of life safety in building fire and method of evacuation.	2	S

Course	P	Program Outcomes (Course Articulation Matrix (Highly Mapped-										ed-	Prog	ram	Program		
Outco		3, Moderate- 2, Low-1, Not related-0)											Spec	ific	Educational		
mes													Outcomes		Outcomes		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PEO	PE	PE
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	1	O 2	O 3
CO 1	3	2	2	1	3	0	3	0	2	2	2	3	3	1	3	2	2
CO 2	3	2	1	1	`1	0	0	0	1	2	0	2	2	1	2	2	3
CO 3	2	3	2	1	2	0	2	0	1	0	2	2	2	2	2	2	2
CO 4	3	2	2	2	2	0	1	0	1	1	2	2	2	2	2	1	2
CO 5	3	2	2	2	2	0	2	0	2	2	0	2	3	2	2	3	2
Avg	2.8	2.2	1.8	1.4	2	0	1. 8	0	1. 6	1.4	1.3	2.2	2.2	1.6	2.2	2	2.2

ME4301	Title: Alternative Fuels	LTPC
		3 0 0 3
Version No.	1.0	
Course Prerequisites	Nil	
Objectives	To know about the types of alternative fuels and energy sources for IC	engines.
Unit No.	Unit Title	No. of hours
		(per Unit)
Unit I	Introduction	7
Working process of I.C. En	gine. Study of various parameters related to properties of different types	s of fuel (Rating of
fuel, Ignition quality, volati	lity, calculations of Air-Fuel ratio, Calorific Value) as input and output	in terms of results
(Fuel efficiency, Fuel requir	rement, Engine efficiency and Engine life). Sources of fossil fuel, scop	e of availability of
fossil fuel in future.		7
	Need for Alternative Fuels	/
Effects of constituents of Ex	what gas emission on environmental condition of earth, Pollution creaters affect Eastern affecting group affect Study of Clabel Carl	ted by Exhaust gas
emission in atmosphere. Gre	ennouse effect, Factors affecting greenhouse effect. Study of Global Carl	bon Budget, Carbon
foot print and Carbon credit	t calculations. Emission norms as per Bharat Standard up to BS - VI	and procedures for
	Alashal and Pic Dissal	7
Sources of Methanol and Ett	Accolor and Dio Dieser	/ maine fuels Use of
alcohols in SL and CL eng	ines performance of blending methanol with gasoline. Emulsification of	alcohol and diesel
Dual fuel systems Base ma	aterials used for production of Bio Diesel Process of separation of Bio	Diesel Properties
Diesel blended with vegetab	le oil and difference in performance of Engine	Diesei. Troperties
Unit IV	Hydrogen and Biogas	8
Hydrogen as a substitute	fuel. Study Properties. Sources and methods of Production of Hydr	ogen. Storage and
Transportation of hydrogen.	Advantages of hydrogen (Liquid hydrogen) as fuel. Cost estimation. La	vout of a hydrogen
car. Fuel Cells: Concept of f	uel cells based on usage of Hydrogen and Methanol. Power rating and per	formance.
Introduction to Biogas system	n, Factors affecting biogas formation. Usage of Biogas in SI engine and C	CI engine.
Unit V	Vegetable Oils, LPG and CNG	7
Vegetable oils for	Engines, Esterification, Performance and emission	characteristics.
Synthetic Alternative Fuels:	Di-Methyl Ether (DME), P-Series, Eco Friendly Plastic fuels (EPF).	
LPG and CNG: Properties of	f LPG and CNG as engine fuels, fuel metering systems, combustion chara	acteristics, effect on
performance, emission, cost	and safety.	
Text Books	1. S.S. Thipse, Alternative Fuels: Concepts, Technologies and Develop	nents, Jaico
	Publishing House	
	2. Zainul, Abdul, Alternative Fuels for CI Engines, Springer Publication	15
Reference Books	1. Dr. G. Devaradjane, Dr. M. Kumaresan, Automobile Engineering, AM	IK Publishers.
	2. Richard L Bechtold P.E., Alternative Fuels Guide Book, Society of A	utomotive
	Engineers	
	3. Gernard Knothe, Jon Van Gerpen, Jargon Krani, The Biodiesel Hand	book, AOCS Press
Mode of Evolution	Unternal and External Exeminations	
Decommondation by		
Recommendation by Roard of Studios on	06.06.2019	
Data of approval by the	13.07.2019	
Academic Council	13.07.2017	

Unit-wise Course Outcome	Descriptions	BL Level	Employability (Em)/ Skill(S)/ Entrepreneurship (En)/ None (Use, for more than One)
C01	Students should able to understand the basic concepts of IC engine	2	S,Em
CO2	Students should aware about the need of alternative fuel in different fields	2	S,Em
CO3	Students should able to understand and analyze the application of alcohol and biodiesel in IC engine	3	S
CO4	Students should able to understand the application Hydrogen and biogas	2	None
CO5	Students should able to apply the basics of chemistry in the preparation of biodiesel	2	S

<u>CO-PO Mapping for ME4301</u>

Course	F	Program Outcomes (Course Articulation Matrix (Highly Mapped-												am	Pro	ogram	
Outco		3, Moderate- 2, Low-1, Not related-0)											Spec	ific	Educational		
mes											Outcomes		Out				
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PEO	PE	PE
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	1	O 2	O 3
CO 1	3	1	0	0	3	1	2	0	0	0	0	3	3	0	0	2	3
CO 2	3	2	1	2	0	1	2	0	0	0	0	2	3	1	0	2	3
CO 3	3	3	2	2	0	1	2	0	0	0	2	1	3	3	0	2	2
CO 4	3	2	3	3	2	1	1	0	0	1	2	1	3	2	1	1	3
CO 5	3	2	3	3	2	1	2	0	0	2	0	1	3	2	2	3	3
Avg	3	2	1.8	2	1.6	1	1. 8	0	0	0.6	0.	1.8	3	2.2	1.2	2	2.6

ME4302	Title: Solar Energy Technology	L T P C
		3 0 0 3
Version No.	1.0	
Course Prerequisites	Nil	
Objectives	The course will deliver fundamental knowledge of the solar energy tec	hnologies, both,
	thermal and photovoltaic.	8,,,,
Unit No.	Unit Title	No. of hours
		(per Unit)
Unit I	Introduction	8
Solar angles, day length, ang	gle of incidence on tilted surface; Sunpath diagrams; Shadow determinat	tion; Extraterrestrial
characteristics; Effect of ear	th atmosphere; Measurement and estimation on horizontal and tilted su	urfaces; Analysis of
Indian solar radiation data an	d applications.	
Flat-plate Collectors - Effect	ctive energy losses; Thermal analysis; Heat capacity effect; Testing r	nethods; Evacuated
tubular collectors; Air flat-p	late Collectors: types; Thermal analysis; Thermal drying. Selective Surf	aces - Ideal coating
characteristics; Types and ap	plications; Anti-reflective coating; Preparation and characterization.	
Unit II	Concentrating Collector Designs	6
Concentrating Collector De	signs - Classification, design and performance parameters; Tracking s	ystems; Compound
parabolic concentrators; Par	rabolic trough concentrators; Concentrators with point focus; Heliosta	ats; Comparison of
various designs: Central rece	iver systems, parabolic trough systems; Solar power plant; Solar furnace	8
Unit III	Solar Heating and Cooling and Energy Storage	8
Solar Heating and Cooling S	System - Liquid based solar heating system; Natural, forced and gravity	flow, mathematical
modeling, Vapour absorptio	n refrigeration cycle; Water, ammonia and lithium bromide-water abso	orption refrigeration
systems; Solar operated ref	rigeration systems; Solar desiccant coolingSolar Thermal Energy	Storage - Sensible
storage; Latent heat storage;	Thermo-chemical storage. Solar still; Solar cooker: Solar pond; Solar	passive heating and
cooling systems: Trombe wa	II; Greenhouse technology: Fundamentals, design, modeling and applicat	ions.
	Solar Cell Physics	/
Solar Cell Physics, P-N ju	inction: homo and hetro junctions, Metal-semiconductor interface; Da	rk and illumination
characteristics; Figure of me	sits of solar cell; Efficiency limits; variation of efficiency with band-g	ap and temperature;
Efficiency measurements; H	gn eniciency cells, 1 andem structure.	7
Unit V	SPV systems	/
SPV Applications - Centraliz	zed and decentralized SPV systems; Stand alone, hybrid and, grid connect	of SDV aratema
Covernment Schemes and B	maintenances, Fleid experience, PV market analysis and economics	of SPV systems,
Tort Books	1 U.D. Cara, I. Drakash, Salar Enargy, Eundemontals and Anniastic	ma Toto MaCrow
Text BOOKS	Hin Hin Garg, J. Flakash, Solar Energy. Fundamentals and Application	nis, Tata McGraw
	2 S P Sukhatme Solar Energy Tata McGraw Hill	
Reference Books	1 LF Kreider and Frank Kreith Solar Energy Handbook McGraw Hill	
Kerei ence DOOKS	2 D Y Goswami Frank Kreith and I F Kreider Principles of Solar Fro	vineering Taylor
	and Francis	Sincering, ruyior
Mode of Evaluation	Internal and External Examinations	
Recommendation by	06.06.2019	
Board of Studies on		
Date of approval by the	13.07.2019	
Academic Council		

Unit-wise Course Outcome	Descriptions	BL Level	Employability (Em)/ Skill(S)/ Entrepreneurship (En)/ None (Use , for more than One)
C01	Students should be able to conceptual knowledge of the solar	2	Em
	associated with solar power development and management.	Z	
CO2	Students should be able to concentrating collector designs of	2	Em
	solar energy technology, solar power plant; solar furnaces.		
CO3	Students should be able to solar heating and cooling system –	2	S
C04	Students should be able to call abraics variation of		C
C04	efficiency with band-; high efficiency cells tandem structure	2	3
	of the solar .	2	
CO5	Students should be able to develop a comprehensive	2	S
	technological understanding in solar pv system components.	2	

Course	F	Program Outcomes (Course Articulation Matrix (Highly Mapped-												ram	Program		
Outco		3, Moderate- 2, Low-1, Not related-0)											Spec	ific	Educational		
mes											Outcomes		Outcomes				
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PEO	PE	PE
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	1	O 2	O 3
CO 1	3	2	2	1	3	0	3	0	2	2	2	3	3	0	1	2	2
CO 2	3	2	1	2	0	0	0	0	1	2	0	2	3	1	1	2	3
CO 3	3	3	2	2	2	0	2	0	1	0	2	0	3	3	1	2	2
CO 4	3	2	3	3	2	0	1	0	1	1	2	0	3	2	1	1	3
CO 5	3	2	3	3	2	0	2	0	2	2	0	0	3	2	2	3	3
Avg	3	2.2	2.2	2.2	2.2	0	1. 8	0	1. 6	1.4	1.3	1	3	2.2	1.2	2	2.6

ME4304	Title: Nuclear Engineering	LTPC
		3 0 0 3
Version No.	1.0	
Course Prerequisites	Nil	
Objectives	To learn nuclear fuel cycles, characteristics, principles governing nu	clear fission chain
	reaction and fusion	
Unit No.	Unit Title	No. of hours
		(per Unit)
Unit I	Nuclear reactions	7
Mechanism of nuclear fission	n - nuclides - radioactivity - decay chains - neutron reactions - the fission	process - reactors -
types of fast breeding reactor	r - design and construction of nuclear reactors - heat transfer techniques i	in nuclear reactors -
reactor shielding	I	
Unit II	Reactor Materials	8
Nuclear Fuel Cycles - charac	teristics of nuclear fuels - Uranium - production and purification of Uran	ium - conversion to
UF4 and UF6 - other fuels lil	ke Zirconium, Thorium – Berylium.	
Unit III	Reprocessing	8
Nuclear fuel cycles - spent fu	el characteristics - role of solvent extraction in reprocessing - solvent ext	raction equipment.
Unit IV	Separation of reactor products	7
Processes to be considered -	'Fuel Element' dissolution - precipitation process - ion exchange - red	ox - purex - TTA -
chelation -U235 - Hexone - "	TBP and thorax Processes - oxidative slaging and electro - refinng - Isot	opes - principles of
Isotope separation		_
Unit V	Waste disposal and radiation protection	6
Types of nuclear wastes - sa	fety control and pollution control and abatement - international convention	on on safety aspects
- radiation hazards prevention	n	
Text Books	1. Cacuci, Dan Gabriel, Nuclear Engineering Fundamentals, Springer	
	2. Collier J.G. and G.F. Hewitt, Introduction to Nuclear Power, Hemisp	here Pub.
Reference Books	1. S. Glasstone and A. Sesonske, Nuclear Reactor Engineering, Von No	ostrand
	2. Kenneth D. Kok, Nuclear Engineering, CRC Press.	1
	3. J. Kenneth Shultis, Richard E. Faw, Fundamentals of Nuclear Science	e and Engineering,
	CRC Press	
	4. Lamarsh J.R., Wesley, Introduction to Nuclear Reactor Theory, Ame	r Nuclear Society
Mode of Evaluation	Internal and External Examinations	
Recommendation by	06.06.2019	
Board of Studies on	12.07.2010	
Date of approval by the	13.07.2019	
Academic Council		

Unit-wise Course Outcome	Descriptions	BL Level	Employability (Em)/ Skill(S)/ Entrepreneurship (En)/ None (Use , for more than One)
C01	Students should be able to mechanism of nuclear fission, - design and construction of nuclear reactors.	2	Em
CO2	Students should be able basic knowledge of nuclear fuel cycles and reactor materials.	2	Em
CO3	Students should be able to nuclear fuel cycles - spent fuel characteristics - solvent extraction equipment.	2	None
CO4	Students should be able to basic knowledge of separation of reactor products, - principles of isotope- separation.	2	None
CO5	Students should be able to understand the waste disposal and radiation protection, radiation hazards prevention	2	Em

Course	P	Program Outcomes (Course Articulation Matrix (Highly Mapped-												am	Pro	ogram	
Outco		3, Moderate- 2, Low-1, Not related-0)											Spec	ific	Educational		
mes													Outco	mes	Outcomes		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PEO	PE	PE
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	1	O 2	O 3
CO 1	3	2	2	1	1	1	2	0	1	0	2	3	3	0	2	2	2
CO 2	3	2	2	2	1	1	2	0	1	0	0	2	2	1	2	2	3
CO 3	2	3	2	2	2	1	2	0	1	0	2	0	3	3	2	2	2
CO 4	2	2	3	2	2	1	1	0	1	0	2	0	2	2	2	1	3
CO 5	3	2	3	2	2	2	2	0	1	0	0	0	3	2	2	3	3
Avg	2.6	2.2	2.3	1.8	1.6	1.2	1. 8	0	1	0	1.3	1	2.6	2.2	2	2	2.6

ME4303	Title: Energy Storage Techniques	LTPC
		3 0 0 3
Version No.	1.0	
Course Prerequisites	Nil	
Objectives	The objective of this course is to learn fundamentals of energy storage	methods
Unit No.	Unit Title	No. of hours
		(per Unit)
Unit I	Introduction	7
Introduction to energy storag	e, Need of Energy storage, Different modes of energy storage, Technolog	gy Types.
Mechanical energy storage:	flywheels, compressed air and pumped hydro electric storage- advantages	and application
Unit II	Battery storage	7
Principle of operation Batte	ery components and design Electrode, cell and battery fabrications B	uilding block cells,
battery modules and packs	Li-polymer batteries, Li-ion batteries ,Advance Ni-MH batteries for tr	ansportation Future
prospects of Ni-MH batteries	s vs. lithium ion batteries, Lead-acid battery	1
Unit III	Magnetic and Electric Storage	7
Supercapacitor energy sto	rage, Advance battery-supercap hybrids for auto, space and n	narine applications
Superconducting Magnetic E	nergy Storage-Advantages, disadvantages, applications	1
Unit IV	Fuel Cell and Hydrogen Storage	7
Advance fuel cells Introduc	ction to fuel cells PEM and alkaline fuel cells for transportation Sol	lid oxide fuel cells
Hydrogen storage systems S	Solid state hydrogen storage tanks Gas phase hydrogen storage tanks C	Cryogenic hydrogen
storage tanks Liquid phase h	ydrogen storage tanks Fuel reformers Advanced fuel reformers	ſ
Unit V	Thermal Storage	8
Thermal storage in building (PCM)	s, Earth storage, Aquifers storage. Basics of Latent heat storage, Phas	se change materials
Text Books	1. Pendse, Energy Storage Science and Technology, SBS Publishers	
	2. Mullick, Garg and Vijay Bhargava, Solar Thermal Energy Storage, S	pringer
Reference Books	1. Detlef Stolten, Hydrogen and Fuel Cells: Fundamentals, Technologia	es and Applications,
	Wiley	
	2. Jiujun Zhang, Lei Zhang, Electrochemical Technologies for E	nergy Storage and
	Conversion, John Wiley and Sons.	
	3. Batteries for Renewable Energy Storage, The Electrochemical Societ	ty, New Jersy
	4. H.A Kiehne, Battery Technology Handbook, CRC Press book	
Mode of Evaluation	Internal and External Examinations	
Recommendation by	06.06.2019	
Board of Studies on		
Date of approval by the	13.07.2019	
Academic Council		

Unit-wise Course Outcome	Descriptions	BL Level	Employability (Em)/ Skill(S)/ Entrepreneurship (En)/ None (Use , for more than One)
CO1	Students should able to understand the energy storage systems	2	S,Em
CO2	Students should able to understand the working of battery storage systems	2	S
CO3	Students should able to understand the working of magnetic and electric storage systems	2	S
CO4	Students should able to understand the working of fuel cell and hydrogen storage systems	2	S
C05	Students should able to understand the thermal storage systems	2	S,Em

Course	P	Program Outcomes (Course Articulation Matrix (Highly Mapped-											Prog	ram	Program		
Outco		3, Moderate- 2, Low-1, Not related-0)											Spec	ific	Educational		
mes											Outcomes		Outcomes				
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PSO	PSO	PEO	PE	PE
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	1	O 2	O 3
CO 1	3	2	1	1	1	2	2	0	0	0	0	1	3	2	2	2	1
CO 2	3	2	1	1	1	2	2	0	0	0	0	1	3	2	3	1	1
CO 3	3	2	1	1	1	1	2	0	0	0	0	1	3	2	2	2	1
CO 4	3	2	1	1	1	2	2	0	0	0	0	1	3	2	2	1	1
CO 5	3	2	1	1	1	0	2	0	0	0	0	1	3	2	2	1	1
Avg	3	2	1	1	1	0.8	2	0	0	0	0	1	3	2	2.2	1.4	1

	-	
ME4305	Title: Energy Management in Thermal System	LTPC
		3 0 0 3
Version No.	1.0	
Course Prerequisites	Nil	
Objectives	To learn the instruments suitable for energy auditing and to study the various	measures for
_	energy conservation and financial implications for various thermal utilities.	
Unit No.	Unit Title	No. of hours
		(per Unit)
		8
Energy Scenario, world and	I India. Energy Resources Availability in India. Energy consumption p	battern. Energy
conservation potential in vari	ious Industries and commercial establishments. Energy intensive industries	s, an overview.
Energy conservation and energy	gy efficiency, needs and advantages. Energy auditing, types, methodologies, t	barriers. Role of
energy manager, Energy audit	t questionnaire, energy Conservation Act 2003.	1
Unit II	Instruments for Energy Auditing	8
Instrument characteristics, s	sensitivity, readability, accuracy, precision, hystersis. Error and calibration. N	Measurement of
flow, velocity, pressure, temp	perature, speed, Lux, power and humidity. Analysis of stack, water quality,	power and fuel
quality.		
Unit III	Thermal Utilities: Operation and Energy Conservation	6
Boilers, Thermic Fluid Heaters	s, Furnaces, Waste Heat Recovery Systems, Thermal Storage.	
Unit IV	Thermal Energy Transmission	6
Steam traps, refractories, optim	num insulation thickness, Insulation, piping design.	
Unit V	Financial Management	8
Investment, need, appraisal and	nd criteria, financial analysis techniques, break even analysis, simple pay bac	k period, return
on investment, net present valu	ie, internal rate of return, cash flows, DSCR, financing options, ESCO concept	t.
Text Books	1 C B Smith Energy Management Principles Pergamon Press New York	
Reference Books	1 PR Trivedi KR Jolka Energy Management Commonwealth Publication	
Kelefence Dooks	2 Write Larry C. Industrial Energy Management and Utilization Hemish	nere Publishers
	Washington	lere i dominiers,
	3 Hamies Energy Auditing and Conservation. Methods Measurements M	Ianagement and
	Case Study Washington	unugement unu
Mode of Evaluation	Internal and External Examinations	
Recommendation by Board		
of Studies on	00.00.2019	
of Studies on Date of approval by the	13.07.2019	

Unit-wise Course Outcome	Descriptions	BL Level	Employability (Em)/ Skill(S)/ Entrepreneurship (En)/ None (Use , for more than One)
CO1	Students should be able to the course is intended to introduce principles of energy auditing and to provide measures for energy conservation in thermal applications	2	S,Em
CO2	Students should be able to design suitable energy monitoring system to analyz and optimize the energy consumption in an organization.	3	S
CO3	Students should be able to improve the thermal efficieny by designing suitable systems for heat recovery and co-generation.	3	S
CO4	Students should be able to guide the employees of the organization about the need and the methods of energy conservation.	2	S
CO5	Students will be able to carry out the cost- benefit analysis of various investment alternatives for meeting the energy needs of the organization.	3	S,Em

Course	Program Outcomes (Course Articulation Matrix (Highly Mapped-												Program		Program		
Outco	3, Moderate- 2, Low-1, Not related-0)													Specific		Educational	
mes														Outcomes		Outcomes	
	PO												PSO	PSO	PEO	PE	PE
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	1	O 2	O 3
CO 1	3	2	2	1	3	2	3	0	2	2	2	3	3	1	2	2	2
CO 2	3	2	1	2	0	2	0	0	1	2	0	2	3	1	1	2	3
CO 3	3	3	2	2	2	1	2	1	1	0	2	1	3	3	2	2	2
CO 4	3	2	3	3	2	2	1	1	1	1	2	1	3	2	2	1	3
CO 5	3	2	3	3	2	2	2	1	2	2	0	1	3	2	2	3	3
Avg	3	2.2	2.2	2.2	2.2	1.8	1. 8	0.6	1. 6	1.4	1.3	1.6	3	1.8	1.8	2	2.4

ME 4200	Titles Air Conditioning System Design	LTDC								
WIE 4309	The. An -Conditioning System Design									
		5005								
Version No.	1.0									
Course Prerequisites	Nıl									
Objectives	To provide the concepts of thermal distribution technique through a air conditioning system									
	and its various types and advantages	T								
Unit No.	Unit Title	No. of hours								
		(per Unit)								
Unit I	6									
Cooling And Heating Load	Calculation - I: Introduction, solar radiation, constant and irradiation ge	eometry and various								
related basic and derived angle	e ,angle of incident for horizontal, vertical and tilted surfaces, calculation	of direct, diffuse and								
reflected radiation using ASH	RAE solar radiation model including effect									
of clouds.										
Unit II	Solar Radiation fenestration, ventilation and infiltration	8								
Cooling And Heating Load Ca	alculation - II: Fenestration, need, effect on air conditioning systems, estimated	ation, concepts,								
SHGF, shading coefficient, ex	ternal shading, calculation of shaded area, windows with overhang, infiltrat	ion and ventilation,								
causes, estimation of heat tran	sfer rate.									
Unit III	Heat Transfer through building, fabric heat gain/loss	8								
Cooling And Heating Load Ca	alculation – III: Heat transfer through buildings, 1-D, steady state and unste	ady state heat								
transfer through homogeneous	s, non homogeneous walls, air spaces, composite walls, opaque walls, roofs.	The analytical and								
in brief numerical methods us	ed to solve the 1-D transient heat transfer problem, semi-emperical methods	s, physical								
significance of decrement and	time lag factor, typical tables of CLTD for walls and roofs.	, 1 ,								
Unit IV	Selection Of Air Conditioning Systems	6								
Introduction to thermal distrib	ution systems, there functions, selection criteria and there classification of a	ir conditioning								
systems, working principal, ac	lvantages, disadvantages and its application for various air/water flow syste	ms.								
Unit V	Transmission of Air in Air Conditioning Ducts	8								
Describe an air handling unit(AHU) its functions, need for studying transmission, air flow through ducts.	Bernoulli and								
modified Bernoulli equation.	static, dynamic, datum and total head, fan total pressure(FTP) and power in	out to fan, estimation								
of pressure loss through ducts	estimation of dynamic pressure drop in various types of heatings.	,								
Text Books	1 Stoecker W F Refrigeration and air conditioning McGraw Hill									
	1. Storenter W.1. ,teningerunten und un conditionning, intestativ Tim									
	2. C.P. Arora Refrigeration and air conditioning, Tata McGraw Hill.									
	, 6									
Reference Books 1. Ahmad ul Ameen ,Refrigeration and air conditioning, PHI publication.										
2. Shan K. Wang ,Handbook of air conditioning and Refrigeration, Tata McGraw Hill										
Mode of Evaluation	Internal and External Examinations									
Recommendation by	06.06.2019									
Board of Studies on										
Date of approval by the	13.07.2019									
Academic Council										

Unit-wise Course Outcome	Descriptions	BL Level	Employability (Em)/ Skill(S)/ Entrepreneurship (En)/ None (Use , for more than One)
CO1	Students should be able to estimate the solar radiation.	3	S
CO2	Students should be able to learn about the Solar Radiation fenestration, ventilation and infiltration.	2	S
CO3	Students should be able to learn about the Heat Transfer through building, fabric heat gain/loss.	3	S
CO4	Students should be able to sense about the Selection of Air Conditioning Systems	2	S
CO5	Students should be able to differentiate about the Transmission of Air in Air Conditioning Ducts	2	S,Em

Course	Program Outcomes (Course Articulation Matrix (Highly Mapped-													Program		Program	
Outco	3, Moderate- 2, Low-1, Not related-0)												Specific		Educational		
mes														Outcomes		Outcomes	
	PO											PSO	PSO	PEO	PE	PE	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	1	O 2	O 3
CO 1	3	2	2	1	3	0	3	0	2	2	2	2	3	0	1	2	2
CO 2	3	2	1	2	0	0	0	0	1	2	0	2	3	1	1	2	3
CO 3	3	3	2	2	2	0	2	0	1	0	2	1	3	3	1	2	2
CO 4	3	2	3	3	2	0	1	0	1	1	2	1	3	2	1	1	3
CO 5	3	2	3	3	2	0	2	0	2	2	0	1	3	2	2	3	3
Avg	3	2.2	2.2	2.2	2.2	0	1. 8	0	1. 6	1.4	1.3	1.4	3	2.2	1.2	2	2.6